• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some effects of magnetic fields on energy deposition in tissue for low-let radiations

Ismail, A. K. A. A. January 1986 (has links)
The presence of a moderately strong magnetic field, uniform and static, in the irradiated medium modifies the spatial distribution of events. The imposition of a magnetic field produces elecron helices, characterised by their radii and pitches. The differential and integral distribution of track lengths, corresponding to electrons slowing down in water in a magnetic field, have been computed as function of radii and pitches for 200 kVp X-rays and for <sup>60</sup> Co gamma-rays. Theoretical work has shown that the probability of energy deposition in a smaller volume of the absorbing medium has been significantly increased as a result of the presence of a magnetic field during photon irradiation. The distributions of track lengths as function of electron radii and pitches have been studied in strong magnetic fields (1 - 20 Tesla). The trajectories of an electron moving in water for different emission angles (up to π/2) and for magnetic fields of 5 and 10 Tesla, have been computed. The data for stopping powers used in this study, cover electron energies of 30 eV to 1200 keV (initial energy). In the presence of a magnetic field, each electron spiral has enclosed a conical volume. As the magnetic field increases, so the volume enclosed by the spiral decrease resulting in a substantial increase in the number of hits (events) compared with events in the same volume in the absence of a magnetic field. The experimental work started with the study of the characteristics of a spherical walled proportional counter. The frequency density, y.f(y), energy probability density, y^2f(y), distributions and their averages overline Y_F and overline Y<sub>D</sub> respectively, have been computed on the basis of the pulse height distribution of low-LET radiation. Gamma rays from <sup>137</sup>Cs and <sup>60</sup>Co have been used with and without a magnetic field. Transverse magnetic fields of 0.0304, 0.13, 0.24 and 0.34 Tesla as well as a longitudinal magnetic field of 0.0304 Tesla have been used in microdosimetric measurements. An average sphere diameter of 2 μm has been simulated for the purpose. In the presence of the transverse magnetic fields, an increase of up to ~ 45% and ~ 78% has been obtained in the values of overline Y_F and overline Y_D respectively for ^137Cs gamma rays. For ^60Co gamma rays the values of both overline Y_F and overline Y_D increase by up to about 97%. For the longitudinal magnetic field when compared with the corresponding transversal magnetic field, a substantial increase in the value of overline Y_F has been found for ^137Cs gamma rays and a less significant increase for ^60Co gamma rays. Also, a significant increase in overline Y_D has been obtained for both indirectly ionizing radiations.

Page generated in 0.0715 seconds