Spelling suggestions: "subject:"badius off curvature"" "subject:"badius oof curvature""
11 |
[pt] ESTUDO DE MÉTODOS NUMÉRICOS PARA A MODELAGEM DA PROPAGAÇÃO ELETROMAGNÉTICA EM GUIAS DE ONDAS CURVADOS DE SEÇÃO TRANSVERSAL RETANGULAR / [en] STUDY OF NUMERICAL METHODS FOR MODELING ELECTROMAGNETIC WAVE PROPAGATION IN CURVED WAVEGUIDES WITH RECTANGULAR CROSS-SECTIONPEDRO LIMA VAZ JANNUZZI 17 March 2025 (has links)
[pt] Esta pesquisa apresenta casos de estudo de aplicações de engenharia,
como a propagação eletromagnética em guias de onda uniformemente curvados
com seção transversal retangular, operando em frequências típicas dos sistemas
de rede móvel 5G e 6G. Neste trabalho, apresentamos o problema de valor de
contorno e abordamos técnicas numéricas para resolver as equações de Maxwell
em guias de onda curvados, visando soluções para o problema de autovalores
associado. Primeiro, o método de Point Matching é empregado como uma
alternativa para resolver esse tipo de problema por meio do rastreamento de
zeros do determinante de uma matriz. Em seguida, utilizamos o Método do
Momentos para resolver esse mesmo problema, por meio do cálculo de integrais
de superfície das funções sobre a geometria retangular. Além disso, este método
é utilizado por ser tratar de um problema de autovalor linear, tornando-o mais
prático que o Point Matching. Por fim, mediante um algoritmo computacional
desenvolvido em Matlab, apresentamos uma série de resultados da propagação
eletromagnética do guia retangular curvado no plano H e no plano E para
diferentes valores do raio de curvatura da seção retangular curvada. Os
resultados numéricos evidenciam a convergência da solução apresentada em
relação à solução exata com pequena quantidade de harmônicos. / [en] This research presents case studies of engineering applications, such as
electromagnetic propagation in uniformly curved waveguides with rectangular
cross-sections, operating at typical frequencies of 5G and 6G mobile network
systems. In this work, we introduce the boundary value problem and address
numerical techniques for solving the Maxwell s equations in curved waveguides,
aiming for solutions to the associated eigenvalue problem. First, the Point
Matching method is employed as an alternative to solve this type of problem
by tracking zeros of the determinant of a matrix. Next, we use the Method
of Moments to solve the same problem by computing surface integrals of
functions over the rectangular geometry. Additionally, this method is employed
because it deals with a linear eigenvalue problem, making it more practical
than Point Matching. Finally, using a computational algorithm developed in
Matlab, we present a series of results on the electromagnetic propagation of the
curved rectangular waveguide in the H-plane and E-plane for different values of
the curvature radius of the curved rectangular section. The numerical results
demonstrate the convergence of the presented solution with respect to the
exact solution using a small number of harmonics.
|
12 |
Development of Micromachined Probes for Bio-Nano ApplicationsYapici, Murat K. 14 January 2010 (has links)
The most commonly known macro scale probing devices are simply comprised
of metallic leads used for measuring electrical signals. On the other hand,
micromachined probing devices are realized using microfabrication techniques and are
capable of providing very fine, micro/nano scale interaction with matter; along with a
broad range of applications made possible by incorporating MEMS sensing and
actuation techniques. Micromachined probes consist of a well-defined tip structure that
determines the interaction space, and a transduction mechanism that could be used for
sensing a change, imparting external stimuli or manipulating matter.
Several micromachined probes intended for biological and nanotechnology
applications were fabricated, characterized and tested. Probes were developed under two
major categories. The first category consists of Micro Electromagnetic Probes for
biological applications such as single cell, particle, droplet manipulation and neuron
stimulation applications; whereas the second category targets novel Scanning Probe
topologies suitable for direct nanopatterning, variable resolution scanning probe/dip-pen
nanolithography, and biomechanics applications.
The functionality and versatility of micromachined probes for a broad range of
micro and nanotechnology applications is successfully demonstrated throughout the five
different probes/applications that were studied. It is believed that, the unique advantages
of precise positioning capability, confinement of interaction as determined by the probe
tip geometry, and special sensor/actuator mechanisms incorporated through MEMS
technologies will render micromachined probes as indispensable tools for microsystems
and nanotechnology studies.
|
Page generated in 0.07 seconds