• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-scale simulation of automotive catalytic converters / Simulation multi-échelle de l'écoulement dans les systèmes de post-traitement des gaz d'échappement automobile

Ozhan, Cansu 21 November 2014 (has links)
L'utilisation croissante de véhicules au cours des dernières décennies a causé une augmentation dans les émissions de gaz d'échappement nocifs provoquant des problèmes de santé et d'environnement. Cette problématique a conduit les gouvernements à mettre en place des limites d'émissions plus strictes. Afin de respecter ces limites, il est nécessaire de développer des systèmes de post-traitement plus performants. Parmi plusieurs solutions possibles, l'analyse et l'optimisation de l'impact de l'écoulement sur les réactions chimiques est une approche importante pour résoudre ce problème complexe. Au point de vue expérimental, il est très difficile de mesurer le champ de vitesse détaillé et la distribution de la température et de la concentration. Les simulations numériques peuvent fournir des informations supplémentaires pour comprendre l'interaction entre la distribution de l'écoulement et l'efficacité des réactions. La simulation numérique de ces systèmes est très coûteuse due aux phénomènes physiques et chimiques complexes ayant lieu simultanément dans tout le système. Afin de diminuer ce coût, on peut développer des modèles physiques et chimiques simplifiés ainsi que des techniques numériques spécifiques pour simuler le système tout en réduisant le temps de calcul. Dans cette thèse, nous développons une approche générale pour modéliser et simuler le système de post-traitement des gaz d'échappement automobile contenant les aspects physiques et chimiques. L'approche présente combine des modèles simplifiés et des techniques numériques de multi-résolutions afin de capturer correctement les caractéristiques de l'écoulement dans le système. Alors que la méthode de raffinement de maillage adaptatif (AMR) est optimisée afin de minimiser l'effort de calcul dans les régions divergente et convergente, un modèle de sous-maille est développé pour décrire l'écoulement dans les micro-canaux du substrat catalytique placé entre la région divergente et la région convergente. La performance du modèle est validée par rapport aux résultats expérimentaux obtenus par Benjamin et al. (2002). Le couplage effectif de méthode AMR et le modèle de sous-maille permet de capturer les caractéristiques de l'écoulement dans le système avec un temps de calcul réduit de manière significative. L'impact de l'écoulement pulsé et de l'écoulement en expansion sur le taux de réaction dans un canal de monolithe est étudié numériquement. La méthode AMR est montrée pour capturer les couches mince de diffusion près de la paroi à l'interface solide-liquide. Sur la base des résultats numériques, nous proposons un modèle simplifié de transport capturant les effets de l'écoulement, la diffusion et la réaction catalytiques à la paroi. Le modèle simplifié de transport peut être directement appliqué dans la forme de modèle de sous-maille pour la description complète de tous les processus physiques et chimiques ayant lieu à l'intérieur du système. Grâce aux approches de modélisation numériques physiques et chimiques développées, il est possible de simuler le système en trois dimensions avec un temps de calcul raisonnable capturant encore la physique principale du problème. / The increasing use of passenger vehicles over the past decades has caused an increase in harmful exhaust gas emissions which give rise to environmental and health problems. This problematic has led governments to establish very stringent emission limits. The emission restrictions require more performing after-treatment systems. Among many other solutions, analysing and optimising the flow impact on the conversion efficiency is an important step towards the solution of the complex engineering problem. Detailed velocity, temperature and concentration distributions are very difficult to measure experimentally. Numerical simulations can provide additional information to understand the interaction of flow distribution and conversion efficiency. The simulation of these systems is computationally very expensive due to complex physical and chemical phenomena occurring simultaneously throughout the system. To overcome this cost, one can resort to some simplified physical and chemical models together with specific numerical techniques to simulate the system with a reduced computational time. In this dissertation, we develop a general approach to model and simulate the automotive catalytic converter system including all the physical and chemical processes. The present approach combines sub-grid models and numerical multi-resolution techniques in order to correctly capture the flow characteristics inside an automotive catalytic converter. While Adaptive Mesh Refinement (AMR) techniques are optimized in order to minimise the computational effort in the divergent and convergent regions, a sub-grid model is developed to describe the flow inside the catalytic substrate placed between the convergent and divergent regions. The performance of the sub-grid model is validated against the experimental results obtained by Benjamin et al. (2002). The effective coupling of AMR techniques and the sub-grid model allows to capture the flow features with significantly reduced computational time. The impact of pulsating and expansion flow on the conversion efficiency within a single monolith channel is investigated numerically. AMR techniques are shown to capture the small boundary layers near the wall at the solid-fluid interface. Based on the numerical results, we propose a simplified transport model that captures the effects of flow, diffusion and catalytic wall reactions. The simplified transport model can be directly applied as a sub-grid model for the complete description of all the physical and chemical processes taking place inside the system. The developed physical, chemical and numerical modelling approaches make the three-dimensional simulations possible with a reasonable computational time still capturing the main physics of the problem.
2

Méthode de raffinement de maillage adaptatif hybride pour le suivi de fronts dans des écoulements incompressibles

Delage Santacreu, Stéphanie 24 June 2006 (has links) (PDF)
Dans ce travail de thèse, on s'est intéressé à la simulation d'écoulements incompressibles multi-échelles et multiphasiques. L'une des principales difficultés numériques est l'introduction d'une diffusion numérique due aux schémas utilisés. Celle-ci étant indépendante du maillage, une possibilité est de simuler ce type d'écoulement avec un très grand nombre points. Cependant, les besoins en ressources informatiques et en temps deviennent rapidement importants. On a donc développé une méthode de raffinement de maillage adaptatif (AMR) dans le but de suivre, soit des interfaces dans un écoulement diphasique, soit des fronts de concentration dans un écoulement monophasique avec transport d'une espèce inerte, de manière précise tout en optimisant le temps CPU et<br />la taille mémoire. On montre au travers de cas d'étude 2D et 3D, judicieusement choisis, l'efficacité de cette méthode.
3

Contribution à la résolution numérique d'écoulements à tout nombre de Mach et au couplage fluide-poreux en vue de la simulation d'écoulements diphasiques homogénéisés dans les composants nucléaires / Contribution to numerical methods for all Mach flow regimes and to fluid-porous coupling for the simulation of homogeneous two-phase flows in nuclear reactors

Zaza, Chady 02 February 2015 (has links)
Le calcul d'écoulements dans les générateurs de vapeur des réacteurs à eau pressurisée est un problème complexe, faisant intervenir différents régimes d'écoulement et plusieurs échelles de temps et d'espace. Un scénario accidentel peut être caractérisé par des variations très rapides pour un nombre de Mach de l'ordre de l'unité. A l'inverse en régime nominal l'écoulement peut être stationnaire, à bas nombre de Mach. De plus quelque soit le régime considéré, la complexité de la géométrie d'un générateur de vapeur conduit à modéliser le faisceau de tubes par un milieu poreux, d'où le problème de couplage à l'interface avec le milieu fluide.Un schéma de correction de pression tout-Mach en volumes finis colocalisés a été introduit pour les équations d'Euler et de Navier-Stokes. L'existence d'une solution discrète, la consistance du schéma au sens de Lax et la positivité de l'énergie interne ont été démontrées. Le schéma a été ensuite étendu aux modèles diphasiques homogènes du code GENEPI développé au CEA. Enfin un algorithme Multigrille-AMR a été adaptée pour permettre de mettre en oeuvre notre schéma sur des maillages adaptatifs.Concernant la seconde problématique, une extension de la loi de Beavers-Joseph a été proposée pour le régime convectif. En introduisant un saut d'énergie cinétique à l'interface, on retrouve une loi de type Beavers-Joseph mais avec un coefficient de glissement non-linéaire, qui dépend de la vitesse fluide à l'interface et de la vitesse Darcy. La validité de cette nouvelle condition d'interface a été évaluée en réalisant des calculs de simulation numérique directe à différents nombres de Reynolds. / The numerical simulation of steam generators of pressurized water reactors is a complex problem, involving different flow regimes and a wide range of length and time scales. An accidental scenario may be associated with very fast variations of the flow with an important Mach number. In contrast in the nominal regime the flow may be stationary, at low Mach number. Moreover whatever the regime under consideration, the array of U-tubes is modelled by a porous medium in order to avoid taking into account the complex geometry of the steam generator, which entails the issue of the coupling conditions at the interface with the free-fluid.We propose a new pressure-correction scheme for cell-centered finite volumes for solving the compressible Navier-Stokes and Euler equations at all Mach number. The existence of a discrete solution, the consistency of the scheme in the Lax sense and the positivity of the internal energy were proved. Then the scheme was extended to the homogeneous two-phase flow models of the GENEPI code developed at CEA. Lastly a multigrid-AMR algorithm was adapted for using our pressure-correction scheme on adaptive grids.Regarding the second issue addressed in this work, an extension to the Beavers-Joseph law was proposed for the convective regime. By introducing a jump in the kinetic energy at the interface, we recover an interface condition close to the Beavers-Joseph law but with a non-linear slip coefficient, which depends on the free-fluid velocity at the interface and on the Darcy velocity. The validity of this new transmission condition was assessed with direct numerical simulations at different Reynolds numbers.

Page generated in 0.0965 seconds