• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 232
  • 76
  • 14
  • 7
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 437
  • 437
  • 51
  • 47
  • 47
  • 45
  • 40
  • 32
  • 27
  • 26
  • 24
  • 24
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

The ecological consequences of hybridization between native westslope cutthroat trout (Oncorhynchus Clarkii Lewisi) and introduced rainbow trout (O. Mykiss) in south western Alberta

Robinson, Michael D., University of Lethbridge. Faculty of Arts and Science January 2007 (has links)
This thesis addresses the issue of hybridization between native westslope cutthroat trout (Oncorhynchus clarkii lewisi) and introduced rainbow trout (O. mykiss), giving strong consideration to their differing glacial refugia during the Wisconsin Glaciation. We hypothesize that having more recently derived from an anadromous form O. mykiss will possess life history characteristics more typical of a highly anadromous species. This hypothesis would also predict hybrids to be intermediate in these characteristics. In a comparison of growth rates and survivorship (Chapter 2) O. clarkii lewisi were found to employ a slower growing, longer lived strategy than O. mykiss, with hybrids typically being intermediate. Additionally, O. mykiss were also found to have aerobic and anaerobic metabolic capacities superior to O. clarkii lewisi in a first time comparison of these species (Chapter 3). These results support the glacial refuge hypothesis, but furthermore provide a potential explanation of the establishment of the elevational gradient commonly observed in hybridization studies. It would seem likely that O. mykiss would require more productive reaches being a faster growing, shorter lived species with higher metabolic costs. This study confirmed the gradient of O. mykiss persisting at lower elevations, trending through a hybrid zone to pure O. clarkii lewisi in headwater reaches and above migratory barriers (Chapter 2). A similar gradient was also reported when considering only the hybrid population, supporting the notion that habitat preference is under some genotypic control. The importance of migratory barriers was found to decrease with elevation suggesting potential additional limiting factors. Hybrid individuals were also found to be intermediate in morphological characteristics (Chapter 4). The confidence in differentiating between pure and non-pure O. clarkii lewisi was found to increase with the number of O. mykiss alleles (degree of hybridization) an individual possessed. Morphological-based identification was found to be an efficient, cost-friendly, preliminary assessment tool that could be useful in limiting the number of sites needing detailed genetic assessment. / 152 leaves : ill. (some col.) ; 29 cm.
302

An examination of predator habitat usage: movement analysis in a marine fishery and freshwater fish

Charles, Colin 03 July 2013 (has links)
This thesis investigates the influence of predator movements upon habitat selection and foraging success. It deals with two very distinct datasets one from a marine system, the snow crab (Chionoecetes opilio) fishery, and the second from a freshwater system, an experimental rainbow trout (Oncorhynchus mykiss) aquaculture operation. Deriving a standardized measure of catch from logbook data is important because catch per unit effort (CPUE) is used in fisheries analysis to estimate abundance, but it some cases CPUE is a biased estimate. For the snow crab fishery, a relative abundance measure was developed using fisher movements and logbook data that reflected commercially available biomass and produced an improved relative abundance estimate. Results from the aquaculture dataset indicate that escaped farmed rainbow trout continue to use the cage site when waste feed is available, while native lake trout do not interact with the cage. Once access to waste feed is removed, both lake trout and escaped rainbow trout do not use the cage site. This thesis uses methods to identify patterns and behaviours using movement tracks to increase our understanding of predator habitat usage.
303

Azoles and Contaminants in Treated Effluents Interact with CYP1 and CYP19 in Fish :

Beijer, Kristina January 2015 (has links)
Numerous contaminants are present in mixtures in the aquatic environment. Among these are the azoles, a group of chemicals that includes both pharmaceuticals and pesticides. Azole fungicides are designed to inhibit lanosterol 14-demethylase (cytochrome P450 (CYP) 51), while other azoles are intended to inhibit aromatase (CYP19), i.e. the enzyme catalyzing biosynthesis of estrogens. In fish, a variety of CYP enzymes are involved in biotransformation of waterborne contaminants, and in metabolism of endogenous compounds including steroidal hormones. The induction of CYP1A protein and 7-ethoxyresorufin O-deethylase (EROD) activity are common biomarkers for exposure to aryl hydrocarbon receptor (AhR) agonists in fish. We developed an assay to measure inhibition of CYP1A activity (EROD) in three-spined stickleback and rainbow trout gill tissue ex vivo. Several azole fungicides were found to be potent inhibitors of CYP1A activity. A wastewater effluent containing high concentrations of pharmaceuticals was also shown to inhibit CYP1A activity. Further, several azoles inhibited CYP19 activity in rainbow trout brain microsomes in vitro. Azole mixtures reduced both CYP1A and CYP19 activity monotonically and in an additive way. Given the additive action of the azoles, studies to determine adverse effects of azole mixtures on CYP-regulated physiological functions in fish are needed. Induction of EROD and of gene expression of CYP1 in several organs was observed in an in vivo exposure with the same effluent shown to inhibit EROD. This finding could imply that there was a mixture of AhR agonists and CYP1A inhibitors in the effluent. Finally, wastewater treatment technologies were evaluated using biomarker responses in rainbow trout exposed to effluents of different treatments. The results from chemical analysis together with the biomarker results show that ozone and granulated active carbon treatment removed most pharmaceuticals, as well as AhR agonists and other chemicals present in the regular effluent. This part of the thesis demonstrates that biomarkers in fish such as induction of CYP1 gene expression are applicable to evaluate the efficiency of different treatment technologies for wastewater.
304

The morphology and function of the peritoneum in lower vertebrates with special reference to teleosts

Lewis, Philip Nigel January 2001 (has links)
No description available.
305

Sublethal effects of dietary selenium exposure on juvenile fishes

2014 June 1900 (has links)
Selenium (Se) is known to cause chronic toxicity in aquatic species. In particular, dietary exposure of fish to selenomethionine (SeMet), the primary form of Se in the diet, is of concern. Previous studies reported that chronic exposure to elevated dietary SeMet altered swimming performance, aerobic metabolism, and energy and endocrine homeostasis in adult fish. However, little is known about the direct effects of dietary SeMet exposure in juvenile fish. Therefore, the overall objective of this thesis was to investigate sublethal pathophysiological effects of subchronic dietary SeMet exposure in two juvenile fish species, fathead minnow (Pimephales promelas) and rainbow trout (Oncorhynchus mykiss). In the first experiment, 20 days post hatch (dph) juvenile fathead minnow were exposed to different measured concentrations (2.8, 5.4, 9.9, 26.5 µg Se/g dry mass [dm]) of Se in food in the form of SeMet for 60 days. In the second experiment, 14 dph juvenile rainbow trout were exposed for 37 days to different measured concentrations (1.0, 4.1, 11.2, 26.1 µg Se/g dm) of Se in food in the form of SeMet. Following exposure, samples were collected for Se analysis and fish were subjected to a swimming performance challenge to assess critical swim speed (Ucrit), tail beat frequency and tail beat amplitude, oxygen consumption (MO2), cost of transport (COT), standard metabolic rate (SMR), active metabolic rate (AMR), and factorial aerobic scope (F-AS). Dietary SeMet exposure impaired swimming ability in both fathead minnow and rainbow trout. Juvenile fathead minnow showed alterations in aerobic metabolism with increased MO2, COT and AMR at the 9.9 and 26.5 µg Se/g diets, while dietary SeMet exposure did not appear to affect aerobic metabolism in juvenile rainbow trout. After swim performance experiments, swam fish were considered fatigued and metabolic and energy storage endpoints were compared to non-swam (non-fatigued) fish. Energy storage capacity was measured via whole body (fathead minnow) and liver and muscle (rainbow trout) triglyceride and glycogen concentrations. For fathead minnow, triglyceride concentrations in non-swam fish were significantly elevated in the 5.4 µg Se/g group relative to controls, and swam fish had significantly lower whole body triglycerides than non-swam fish. All non-swam SeMet exposure groups had significantly decreased whole body glycogen concentrations compared to controls while the 5.4 and 26.5 µg Se/g exposure groups had significantly greater whole body glycogen concentrations in swam versus non-swam fish. In juvenile rainbow trout, liver triglyceride concentrations were significantly lower in all SeMet exposed groups compared to controls in non-swam fish. Swimming decreased liver and muscle triglycerides in the control and 11.2 µg Se/g treatment groups. Liver glycogen concentrations were greater in swam trout in the 4.1 µg Se/g dm exposure group. Muscle glycogen concentrations in non-swam fish, were significantly decreased in the 4.1 and 11.2 µg Se/g exposed groups compared to controls, while muscle glycogen in swam fish was unaffected by dietary SeMet exposure. For the swim status factor, muscle glycogen concentrations were significantly greater in swam versus non-swam trout in all treatment groups. Therefore, dietary SeMet exposure caused impaired swimming performance and metabolic alterations in both juvenile fathead minnow and juvenile rainbow trout. Species differences were apparent, especially in the patterns of altered energy status between swam and non-swam fish exposed to Se. Overall, the pathophysiological implications of these sublethal effects are unclear, but suggest that dietary SeMet exposure may negatively influence juvenile fish survivability in natural habitats.
306

An examination of predator habitat usage: movement analysis in a marine fishery and freshwater fish

Charles, Colin 03 July 2013 (has links)
This thesis investigates the influence of predator movements upon habitat selection and foraging success. It deals with two very distinct datasets one from a marine system, the snow crab (Chionoecetes opilio) fishery, and the second from a freshwater system, an experimental rainbow trout (Oncorhynchus mykiss) aquaculture operation. Deriving a standardized measure of catch from logbook data is important because catch per unit effort (CPUE) is used in fisheries analysis to estimate abundance, but it some cases CPUE is a biased estimate. For the snow crab fishery, a relative abundance measure was developed using fisher movements and logbook data that reflected commercially available biomass and produced an improved relative abundance estimate. Results from the aquaculture dataset indicate that escaped farmed rainbow trout continue to use the cage site when waste feed is available, while native lake trout do not interact with the cage. Once access to waste feed is removed, both lake trout and escaped rainbow trout do not use the cage site. This thesis uses methods to identify patterns and behaviours using movement tracks to increase our understanding of predator habitat usage.
307

Energetic Costs of AhR Activation in Rainbow Trout (Oncorhynchus mykiss) Hepatocytes

Nault, Rance 22 September 2011 (has links)
Aquatic organisms in response to toxic insults from environmental pollutants activate defence systems including the aryl hydrocarbon receptor (AhR) in an attempt to metabolize and excrete these toxicants and their metabolites. These detoxification mechanisms however may come with certain energetic costs. I hypothesize that the activation of the AhR by β-Naphthoflavone (β-NF), a model AhR agonist, results in increased energetic costs requiring metabolic reorganization in rainbow trout hepatocytes. While the results obtained suggest that there are no significant energetic costs of AhR activation, analysis of enzyme activities suggests possible metabolic reorganization. This study also showed significant changes in cellular processes in hepatocytes over the incubation periods which previously were not reported. Furthermore, for the first time in fish hepatocytes, metabolic flux analysis (MFA) was used to examine intra-cellular metabolism, the applicability of which is discussed.
308

Corticosteroidogenesis as a Target of Endocrine Disruption for the Antidepressant Fluoxetine in the Head Kidney of Rainbow Trout (Oncorhynchus mykiss)

Stroud, Pamela A 11 January 2012 (has links)
Fluoxetine (FLX), the active ingredient of Prozac™, is a member of the selective serotonin reuptake inhibitor (SSRI) class of anti-depressant drugs and is present in aquatic environments worldwide. Previous studies reported that FLX is an endocrine disruptor in fish, bioconcentrating in tissues including the brain. Evidence implicates that serotonin influences the activity of the hypothalamo-pituitary-interrenal (HPI) stress axis, thus exposure to FLX may disrupt the teleost stress response. This study examined in vitro cortisol production in rainbow trout (Oncorhynchus mykiss) head kidney/interrenal cells exposed to FLX and 14C-pregnenolone metabolism in head kidney microsome preparations of FLX-exposed trout. Results indicated that cells exposed in vitro to increasing concentrations of FLX had lower cortisol production and cell viability (versus control) and microsomes isolated from trout exposed to 54 μg/L FLX had higher pregnenolone metabolism versus those of control and low FLX-exposed (0.54 μg/L) trout.
309

β2-microglobulin distribution in trout body fluids and release from intestinal epithelial cells in response to plant meal components

Raben, Alex 07 July 2011 (has links)
β2-microglobulin (β2m) exists free of the major histocompatibility complex class I (MHC I) receptor in many bodily fluids. The amount of protein present in these fluids has been found to be a useful prognostic marker for various diseases but outside of its practical value not much is known about this form of β2m. In fish, soluble β2m has not been studied at all. Another unknown in fish is the effects that plants lectins might have on naturally carnivorous species in aquaculture. These plant proteins which bind to specific sugar groups found on cells have been shown to have a multitude of gastrointestinal and immune effects in mammals and can be found in the plant products being fed to carnivorous, cultured fish making them possible toxicants. The two studies of this thesis set out to pioneer knowledge on these subjects using rainbow trout as a model. The first investigation inspected the various body fluids of these fish for their free β2m content. Soluble β2m was found to be present in the plasma, the seminal fluid, ovarian fluid, and the mucus of the skin and intestines. This distribution shows that β2m could indeed make a good biomarker, not only for disease but also for pheromone release and alludes to some possible functions of soluble β2m while opening the way for future research on this form of the protein. The second study looked at the effects of lectins on the gut of rainbow trout by treating RTgutGC, an intestinal epithelial cell line derived from trout, with plant lectins from wheat (WGA) and soybean (SBA), among others. This study found WGA to be a potent inducer of morphological and cytotoxic effects in these cells while other lectins and plant factors were not. WGA was also observed to effect the expression of β2m and the α-chain of the MHC I receptor. This work suggests WGA ingested by trout through the wheat in their diet might be causing them harm and should be studied further. It is also interesting that both studies related β2m to the intestines of trout. This could allow soluble β2m to serves as a marker of WGA’s effect or for WGA to aid in the study of free β2m.
310

Effects of trout on galaxiid growth and antipredator behaviour : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Ecology in the University of Canterbury /

Howard, S. W. January 2007 (has links)
Thesis (M. Sc.)--University of Canterbury, 2007. / Typescript (photocopy). Includes bibliographical references (leaves 65-75). Also available via the World Wide Web.

Page generated in 0.0355 seconds