• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rainwater harvesting for drought mitigation and flood management

Melville-Shreeve, Peter January 2017 (has links)
Rainwater harvesting (RWH) in the UK has seen a low level of uptake relative to similar settings such as Australia and Germany. The relatively low cost of municipal water in the UK limits the financial savings associated with RWH systems, especially in a domestic setting. Although financial benefits can be relatively low (in terms of reduced water bills), academic and practitioner studies have demonstrated the potential for RWH to significantly reduce potable water demands at typical UK houses. Hence, increased uptake of RWH has potential to contribute to mitigating droughts in water scarce regions. Stormwater management in the UK is receiving increasing attention at all levels; from grass-roots sustainable drainage systems (SuDS) such as downpipe disconnections and raingardens; through to implementation of urban realm attenuation schemes and continued development of guidance from UK policy makers. The public realm nature of most SuDS presents a need for partnership approaches to be fostered between infrastructure mangers and the general public. The application of RWH as a technology within the SuDS management train has been limited in the UK as policy makers have taken the view that RWH tanks may be full at the start of a design storm, and thus the potential for attenuation and peak discharge reduction has been largely ignored. However, in the last few years there has been a shift in emphasis; from RWH perceived purely as a water demand management technology to a focus on its wider benefits e.g. mitigating surface water flooding through improved stormwater management. RWH systems examined in this thesis are now available which offer multiple benefits to both end-users and water service providers. The application of RWH in a dual purpose configuration (to displace potable water demands and control stormwater discharges) has seen increasing interest during the development of this thesis. However, the successful design of RWH as a stormwater management tool requires a series of calculations to be completed. To date, practitioners have frequently relied upon low-resolution heuristic methods which lead to a small range of configurations being deployed, with minimal demonstrable stormwater control benefits. In this thesis, full details of novel and traditional RWH technologies were identified and described. Empirical data was collected, both in laboratory conditions and at field sites, to identify the real world operating characteristics of a range of RWH configurations. Additionally a new time series evaluation methodology was developed to enable RWH systems to be designed and analysed. This method quantifies water demand benefits and also focusses on stormwater management metrics (i.e. largest annual discharge and total discharge volume per year). The method was developed to enable a range of RWH configurations to be evaluated at a given site. In addition, a decision support tool (RainWET) was developed and tested which enabled the methods to be deployed in real world settings. The application of the RainWET software allowed a UK-wide, time series analysis of RWH configurations to be completed and the holistic benefits of a range of dual purpose RWH systems to be analysed and described. Evidence from the UK study suggests that a traditional RWH installation (3000l storage, 300l/day demand and 60m2 roof) installed at a house in a water scarce region (London, SAAR 597mm) was able to fully mitigate stormwater overflows over a 20 year analysis whilst providing a mean water saving of 31,255l/annum. An equivalent system located in the wettest region studied (Truro, SAAR 1099mm) saw mean reductions in the largest annual storm of 62% (range 35-86%) whilst satisfying a mean rainwater demand of 50,912l/annum. The study concluded that suitably designed dual purpose RWH systems offered better stormwater management benefits than those designed without a stormwater control device. In addition, the integration of smart RWH controls were shown to maximise stormwater control benefits with little or no reduction in a system’s ability to satisfy non-potable water demands.
2

Lösningar för regnvattenskörd för enbostadshus i Brikama / Rainwater harvesting solution for single residential houses in Brikama

Nyassi, Sereh January 2023 (has links)
Gambia is the smallest country on the African mainland, surrounded by Senegal on all it's borders except the coastal one. Gambia faces a pressing issue with water supply shortages, along with more than one third of the world’s population. The aim of this study is to propose a system that will solve water supply shortage through a local water supply system. The method mainly consisted of a literature review, aimed to provide an overview of the subject as well as to highlight existing gaps within today’s research about rainwater harvesting systems. Furthermore, a case study was used to determine the best way to design the rainwater harvesting system. The results of the study are showcased through a tank and pipe system, where water is collected on the roof of the residential homes and stored in a polyethylene tank on the ground. The results from the survey, asking questions related to the inhabitants’ water usage habits, were analyzed and represented through a table. In Brikama rainwater can be used for laundry, cooking and watering plants. The positive effects it brings include, but are not limited to, reduction of soil erosion, restoring the ground water cycle, as well as making people become more self-sufficient. In this study, a system for Brikama can be optimized by using Solvatten technology in combination with conventional rainwater harvesting methods. The tank volume suggested by Mun and Han (2011) is a feasible premiss, however it can not be directly applied to Gambian rainwater conditions as there are differing presumptions between the reference country Korea, and Gambia. Additionally, the validity of the study is affected as the reference studies suggest using computer simulations, as well as computer models as a basis for the operational and input data. / Gambia är det minsta landet på det afrikanska fastlandet, omgivet av Senegal på alla dess gränser utom den kustnära. Gambia står inför ett akut problem med vattenbrist, tillsammans med mer än en tredjedel av världens befolkning. Syftet med denna studie är att föreslå ett system som löser problematiken med vattenförsörjning genom ett lokalt vattenförsörjningssystem. Metoden bestod huvudsakligen av en litteraturöversikt, som syftade till att ge en överblick över ämnet samt att lyfta fram befintliga luckor inom dagens forskning om system för uppsamling av regnvatten. Dessutom användes en fallstudie för att bestämma det bästa sättet att designa systemet för uppsamling av regnvatten. Resultatet av studien visas genom ett tank- och rörsystem, där vatten samlas upp på taket av bostadshusen och lagras i en polyetentank på marken. Resultatet från undersökningen, med frågor relaterade till invånarnas vattenanvändningsvanor, analyserades och representerades genom en tabell. I Brikama kan regnvatten användas för tvätt, matlagning och vattning av växter. De positiva effekter det medför inkluderar, men är inte begränsade till, minskning av jorderosion, återställande av grundvattnets kretslopp, samt att få människor att bli mer självförsörjande. I denna studie kan ett system för Brikama optimeras genom att använda Solvatten-teknik i kombination med konventionella metoder för uppsamling av regnvatten. Tankvolymen som föreslagits av Mun och Han (2011) är en genomförbar premiss, men den kan inte tillämpas direkt på gambiska regnvattenförhållanden eftersom det finns olika antaganden mellan referenslandet Korea och Gambia. Dessutom påverkas studiens validitet eftersom referensstudierna föreslår att man använder datorsimuleringar, samt datormodeller som underlag för drift- och indata.

Page generated in 0.0889 seconds