• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transitive Factorizations of Permutations and Eulerian Maps in the Plane

Serrano, Luis January 2005 (has links)
The problem of counting ramified covers of a Riemann surface up to homeomorphism was proposed by Hurwitz in the late 1800's. This problem translates combinatorially into factoring a permutation with a specified cycle type, with certain conditions on the cycle types of the factors, such as minimality and transitivity. Goulden and Jackson have given a proof for the number of minimal, transitive factorizations of a permutation into transpositions. This proof involves a partial differential equation for the generating series, called the Join-Cut equation. Furthermore, this argument is generalized to surfaces of higher genus. Recently, Bousquet-M&eacute;lou and Schaeffer have found the number of minimal, transitive factorizations of a permutation into arbitrary unspecified factors. This was proved by a purely combinatorial argument, based on a direct bijection between factorizations and certain objects called <em>m</em>-Eulerian trees. In this thesis, we will give a new proof of the result by Bousquet-M&eacute;lou and Schaeffer, introducing a simple partial differential equation. We apply algebraic methods based on Lagrange's theorem, and combinatorial methods based on a new use of Bousquet-M&eacute;lou and Schaeffer's <em>m</em>-Eulerian trees. Some partial results are also given for a refinement of this problem, in which the number of cycles in each factor is specified. This involves Lagrange's theorem in many variables.
2

Transitive Factorizations of Permutations and Eulerian Maps in the Plane

Serrano, Luis January 2005 (has links)
The problem of counting ramified covers of a Riemann surface up to homeomorphism was proposed by Hurwitz in the late 1800's. This problem translates combinatorially into factoring a permutation with a specified cycle type, with certain conditions on the cycle types of the factors, such as minimality and transitivity. Goulden and Jackson have given a proof for the number of minimal, transitive factorizations of a permutation into transpositions. This proof involves a partial differential equation for the generating series, called the Join-Cut equation. Furthermore, this argument is generalized to surfaces of higher genus. Recently, Bousquet-M&eacute;lou and Schaeffer have found the number of minimal, transitive factorizations of a permutation into arbitrary unspecified factors. This was proved by a purely combinatorial argument, based on a direct bijection between factorizations and certain objects called <em>m</em>-Eulerian trees. In this thesis, we will give a new proof of the result by Bousquet-M&eacute;lou and Schaeffer, introducing a simple partial differential equation. We apply algebraic methods based on Lagrange's theorem, and combinatorial methods based on a new use of Bousquet-M&eacute;lou and Schaeffer's <em>m</em>-Eulerian trees. Some partial results are also given for a refinement of this problem, in which the number of cycles in each factor is specified. This involves Lagrange's theorem in many variables.
3

Building Data for Stacky Covers and the Étale Cohomology Ring of an Arithmetic Curve : Du som saknar dator/datorvana kan kontakta phdadm@math.kth.se för information

Ahlqvist, Eric January 2020 (has links)
This thesis consists of two papers with somewhat different flavours. In Paper I we compute the étale cohomology ring H^*(X,Z/nZ) for X the ring of integers of a number field K. As an application, we give a non-vanishing formula for an invariant defined by Minhyong Kim. We also give examples of two distinct number fields whose rings of integers have isomorphic cohomology groups but distinct cohomology ring structures. In Paper II we define stacky building data for stacky covers in the spirit of Pardini and give an equivalence of (2, 1)-categories between the category of stacky covers and the category of stacky building data. We show that every stacky cover is a flat root stack in the sense of Olsson and Borne–Vistoli and give an intrinsic description of it as a root stack using stacky building data. When the base scheme S is defined over a field, we give a criterion for when a stacky building datum comes from a ramified cover for a finite abelian group scheme over k, generalizing a result of Biswas–Borne. / Denna avhandling består av två artiklar som skiljer sig något i karaktär. I Artikel I beräknar vi den étala kohomologiringen H^*(X,Z/nZ) då X är ringen av heltal av en talkropp K. Som en tillämpning, ger vi ett kriterium i form av en formel för när en invariant definierad av Minhyong Kim är noll eller ej. Vi ger också exempel på två olika talkroppar vars ringar av heltal har isomorfa kohomologigrupper men olika kohomologiringstrukturer. I Artikel II definierar vi stackig byggnadsdata för stackiga övertäckningar i Pardinis anda och visar en ekvivalens av (2,1)-kategorier mellan kategorin av stackiga övertäckningar och kategorin av stackig byggnadsdata. Vi visar att varje stackig övertäckning är en platt rotstack i Olsson och Borne–Vistolis mening och vi ger en intrinsisk beskrivning av den som en rotstack med hjälp av stackig byggnadsdata. När basen S är definierad över en kropp, ger vi ett kriterium för när ett stackigt byggnadsdatum kommer från en ramifierad övertäckning för ett ändligt abelskt gruppschema över k. Detta generaliserar ett resultat av Biswas–Borne.

Page generated in 0.0407 seconds