Spelling suggestions: "subject:"randintegral"" "subject:"andintegral""
1 |
Nonlinear boundary integral equations in inverse scatteringIvanyshyn, Olha January 2007 (has links)
Zugl.: Göttingen, Univ., Diss., 2007
|
2 |
Nonlinear boundary integral equations in inverse scattering /Ivanyshyn, Olha. January 2008 (has links)
University, Diss.--Göttingen, 2007.
|
3 |
Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations / Schnelle Auswertung von Nahfeld-Randintegralen durch TensorapproximationenBallani, Jonas 18 October 2012 (has links) (PDF)
In this dissertation, we introduce and analyse a scheme for the fast evaluation of integrals stemming from boundary element methods including discretisations of the classical single and double layer potential operators. Our method is based on the parametrisation of boundary elements in terms of a d-dimensional parameter tuple. We interpret the integral as a real-valued function f depending on d parameters and show that f is smooth in a d-dimensional box. A standard interpolation of f by polynomials leads to a d-dimensional tensor which is given by the values of f at the interpolation points. This tensor may be approximated in a low rank tensor format like the canonical format or the hierarchical format. The tensor approximation has to be done only once and allows us to evaluate interpolants in O(dr(m+1)) operations in the canonical format, or O(dk³ + dk(m + 1)) operations in the hierarchical format, where m denotes the interpolation order and the ranks r, k are small integers. In particular, we apply an efficient black box scheme in the hierarchical tensor format in order to adaptively approximate tensors even in high dimensions d with a prescribed (but heuristic) target accuracy. By means of detailed numerical experiments, we demonstrate that highly accurate integral values can be obtained at very moderate costs.
|
4 |
Compression Techniques for Boundary Integral Equations - Optimal Complexity EstimatesDahmen, Wolfgang, Harbrecht, Helmut, Schneider, Reinhold 05 April 2006 (has links) (PDF)
In this paper matrix compression techniques in the
context of wavelet Galerkin schemes for boundary
integral equations are developed and analyzed that
exhibit optimal complexity in the following sense.
The fully discrete scheme produces approximate
solutions within discretization error accuracy
offered by the underlying Galerkin method at a
computational expense that is proven to stay
proportional to the number of unknowns.
Key issues are the second compression, that
reduces the near field complexity significantly,
and an additional a-posteriori compression.
The latter one is based on a general result
concerning an optimal work balance, that applies,
in particular, to the quadrature used to compute
the compressed stiffness matrix with sufficient
accuracy in linear time. The theoretical results
are illustrated by a 3D example on a nontrivial
domain.
|
5 |
Wavelets for the fast solution of boundary integral equationsHarbrecht, Helmut, Schneider, Reinhold 06 April 2006 (has links) (PDF)
This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equations. Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of boundary integral operators. This yields quasi-sparse system matrices which can be compressed to O(N_J) relevant matrix entries without compromising the accuracy of the underlying Galerkin scheme. Herein, O(N_J) denotes the number of unknowns. The assembly of the compressed system matrix can be performed in O(N_J) operations. Therefore, we arrive at an algorithm which solves boundary integral equations within optimal complexity. By numerical experiments we provide results which corroborate the theory.
|
6 |
Adaptive Wavelet Galerkin BEMHarbrecht, Helmut, Schneider, Reinhold 06 April 2006 (has links) (PDF)
The wavelet Galerkin scheme for the fast solution of boundary integral equations produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that stays proportional to the number of unknowns. In this paper we present an adaptive version of the scheme which preserves the super-convergence of the Galerkin method.
|
7 |
Wavelet Galerkin Schemes for Boundary Integral Equations - Implementation and QuadratureHarbrecht, Helmut, Schneider, Reinhold 06 April 2006 (has links) (PDF)
In this paper we consider the fully discrete wavelet Galerkin scheme for the fast solution of boundary integral equations in three dimensions. It produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that stays proportional to the number of unknowns. We focus on implementational details of the scheme, in particular on numerical integration of relevant matrix coefficients. We illustrate the proposed algorithms by numerical results.
|
8 |
Wavelets for the fast solution of boundary integral equationsHarbrecht, Helmut, Schneider, Reinhold 06 April 2006 (has links)
This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equations. Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of boundary integral operators. This yields quasi-sparse system matrices which can be compressed to O(N_J) relevant matrix entries without compromising the accuracy of the underlying Galerkin scheme. Herein, O(N_J) denotes the number of unknowns. The assembly of the compressed system matrix can be performed in O(N_J) operations. Therefore, we arrive at an algorithm which solves boundary integral equations within optimal complexity. By numerical experiments we provide results which corroborate the theory.
|
9 |
Adaptive Wavelet Galerkin BEMHarbrecht, Helmut, Schneider, Reinhold 06 April 2006 (has links)
The wavelet Galerkin scheme for the fast solution of boundary integral equations produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that stays proportional to the number of unknowns. In this paper we present an adaptive version of the scheme which preserves the super-convergence of the Galerkin method.
|
10 |
Compression Techniques for Boundary Integral Equations - Optimal Complexity EstimatesDahmen, Wolfgang, Harbrecht, Helmut, Schneider, Reinhold 05 April 2006 (has links)
In this paper matrix compression techniques in the
context of wavelet Galerkin schemes for boundary
integral equations are developed and analyzed that
exhibit optimal complexity in the following sense.
The fully discrete scheme produces approximate
solutions within discretization error accuracy
offered by the underlying Galerkin method at a
computational expense that is proven to stay
proportional to the number of unknowns.
Key issues are the second compression, that
reduces the near field complexity significantly,
and an additional a-posteriori compression.
The latter one is based on a general result
concerning an optimal work balance, that applies,
in particular, to the quadrature used to compute
the compressed stiffness matrix with sufficient
accuracy in linear time. The theoretical results
are illustrated by a 3D example on a nontrivial
domain.
|
Page generated in 0.0663 seconds