• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A New Transmit Diversity Method Using Quantized Random Phases

Berenjkoub, Ensieh January 2013 (has links)
Wireless communication systems, aside from path-loss, also suffer from small scale up-and- down variations in the power of the received signal. These fluctuations in the received signal power, commonly referred to as multi-path fading, result in a significant perfor- mance degradation of the system. One way to combat fading is diversity. The idea behind diversity is to provide the receiver with multiple independent copies of the transmitted signal, either in time, frequency or space dimension. In broadcast networks with underlying slow-faded channels, an appropriate option for exploiting diversity is transmit diversity, which deploys several antennas in the transmitter terminal. Based on the amount of available channel state information on the transmitter side, various transmit diversity schemes have been proposed in the literature. Because of certain limitations of broadcast networks, a practical assumption in these networks is to provide no channel state information for the transmitter. In this dissertation, a new scheme is proposed to exploit transmit diversity for broad- cast networks, assuming no channel state information in the transmitter. The main idea of our proposed method is to virtually impose time variations to the underlying slow-faded channels by multiplying quantized pseudo-random phases to data symbols before trans- mission. Using this method, all necessary signal processing can be transferred to the RF front-end of the transmitter, and therefore, the implementation cost is much less than that of alternative approaches. Under the proposed method, the outage probability of the system is analyzed and the corresponding achievable diversity order is calculated. Simulation results show that the performance of our proposed scheme falls slightly below that of the optimum (Alamouti type) approach in the low outage probability region.
2

A New Transmit Diversity Method Using Quantized Random Phases

Berenjkoub, Ensieh January 2013 (has links)
Wireless communication systems, aside from path-loss, also suffer from small scale up-and- down variations in the power of the received signal. These fluctuations in the received signal power, commonly referred to as multi-path fading, result in a significant perfor- mance degradation of the system. One way to combat fading is diversity. The idea behind diversity is to provide the receiver with multiple independent copies of the transmitted signal, either in time, frequency or space dimension. In broadcast networks with underlying slow-faded channels, an appropriate option for exploiting diversity is transmit diversity, which deploys several antennas in the transmitter terminal. Based on the amount of available channel state information on the transmitter side, various transmit diversity schemes have been proposed in the literature. Because of certain limitations of broadcast networks, a practical assumption in these networks is to provide no channel state information for the transmitter. In this dissertation, a new scheme is proposed to exploit transmit diversity for broad- cast networks, assuming no channel state information in the transmitter. The main idea of our proposed method is to virtually impose time variations to the underlying slow-faded channels by multiplying quantized pseudo-random phases to data symbols before trans- mission. Using this method, all necessary signal processing can be transferred to the RF front-end of the transmitter, and therefore, the implementation cost is much less than that of alternative approaches. Under the proposed method, the outage probability of the system is analyzed and the corresponding achievable diversity order is calculated. Simulation results show that the performance of our proposed scheme falls slightly below that of the optimum (Alamouti type) approach in the low outage probability region.
3

Source and Channel Coding Strategies for Wireless Sensor Networks

Li, Li 12 1900 (has links)
In this dissertation, I focus on source coding techniques as well as channel coding techniques. I addressed the challenges in WSN by developing (1) a new source coding strategy for erasure channels that has better distortion performance compared to MDC; (2) a new cooperative channel coding strategy for multiple access channels that has better channel outage performances compared to MIMO; (3) a new source-channel cooperation strategy to accomplish source-to-fusion center communication that reduces system distortion and improves outage performance. First, I draw a parallel between the 2x2 MDC scheme and the Alamouti's space time block coding (STBC) scheme and observe the commonality in their mathematical models. This commonality allows us to observe the duality between the two diversity techniques. Making use of this duality, I develop an MDC scheme with pairwise complex correlating transform. Theoretically, I show that MDC scheme results in: 1) complete elimination of the estimation error when only one descriptor is received; 2) greater efficiency in recovering the stronger descriptor (with larger variance) from the weaker descriptor; and 3) improved performance in terms of minimized distortion as the quantization error gets reduced. Experiments are also performed on real images to demonstrate these benefits. Second, I present a two-phase cooperative communication strategy and an optimal power allocation strategy to transmit sensor observations to a fusion center in a large-scale sensor network. Outage probability is used to evaluate the performance of the proposed system. Simulation results demonstrate that: 1) when signal-to-noise ratio is low, the performance of the proposed system is better than that of the MIMO system over uncorrelated slow fading Rayleigh channels; 2) given the transmission rate and the total transmission SNR, there exists an optimal power allocation that minimizes the outage probability; 3) on correlated slow fading Rayleigh channels, channel correlation will degrade the system performance in linear proportion to the correlation level. Third, I combine the statistical ranking of sensor observations with cooperative communication strategy in a cluster-based wireless sensor network. This strategy involves two steps: 1) ranking the sensor observations based on their test statistics; 2) building a two-phase cooperative communication model with an optimal power allocation strategy. The result is an optimal system performance that considers both sources and channels. I optimize the proposed model through analyses of the system distortion, and show that the cooperating nodes achieve maximum channel capacity. I also simulate the system distortion and outage to show the benefits of the proposed strategies.
4

Initial access for 5G mmWave private networks

Li, Mei January 2023 (has links)
This research delves into wireless communication systems, with a particular focus on initial access processes, channel modeling, and beamforming strategies. The study involves meticulous channel data collection across diverse urban, suburban, and rural terrains, each presenting unique propagation challenges. The research also simulates a typical communication network with four base stations, adjusting their configurations to suit the varied terrains. A central focus is the implementation of the cell search methodology, including the exploration of random beamforming at both system and cell levels. The findings indicate that the cell-level system configurations do not yield significant performance improvements over the baseline configuration. Furthermore, potential increased costs associated with this strategy are noted. However, it is essential to highlight that this project serves as a critical exploration of the potential benefits of random beamforming at the cell level within non-public network scenarios. While the improvements observed are minimal, the insights gained from this research are poised to guide future research endeavors and contribute to the elimination of uncertainties in the field of wireless communication. / Denna forskning fördjupar sig i trådlösa kommunikationssystem, med särskilt fokus på initiala åtkomstprocesser, kanalmodellering och strålformningsstrategier. Studien involverade noggrann kanaldatainsamling över olika urbana, förorts- och landsbygdsterränger, var och en med unika spridningsutmaningar. Forskningen simulerade också ett typiskt kommunikationsnätverk med fyra basstationer som justerade deras konfigurationer för att passa de varierande terrängerna. Ett centralt fokus var implementeringen av cellsökningsmetoden, inklusive utforskning av slumpmässig strålformning på både system- och cellnivå. Resultaten indikerade att systemkonfigurationerna på cellnivå inte gav signifikanta prestandaförbättringar jämfört med baslinjekonfigurationen. Dessutom noterades potentiella ökade kostnader förknippade med denna strategi. Det är dock viktigt att betona att detta projekt fungerade som en kritisk utforskning av de potentiella fördelarna med slumpmässig strålformning på cellnivå inom icke-offentliga nätverksscenarier. Även om de observerade förbättringarna var minimala, är insikterna från denna forskning redo att vägleda framtida forskningsinsatser och bidra till att eliminera osäkerheter inom området trådlös kommunikation.

Page generated in 0.0852 seconds