Spelling suggestions: "subject:"bank demodulation"" "subject:"bank comodulation""
1 |
Data Representation for Efficient and Reliable Storage in Flash MemoriesWang, Yue 03 October 2013 (has links)
Recent years have witnessed a proliferation of flash memories as an emerging storage technology with wide applications in many important areas. Like magnetic recording and optimal recording, flash memories have their own distinct properties and usage environment, which introduce very interesting new challenges for data storage. They include accurate programming without overshooting, error correction, reliable writing data to flash memories under low-voltages and file recovery for flash memories. Solutions to these problems can significantly improve the longevity and performance of the storage systems based on flash memories.
In this work, we explore several new data representation techniques for efficient and reliable data storage in flash memories. First, we present a new data representation scheme—rank modulation with multiplicity —to eliminate the overshooting and charge leakage problems for flash memories. Next, we study the Half-Wits — stochastic behavior of writing data to embedded flash memories at voltages lower than recommended by a microcontroller’s specifications—and propose three software- only algorithms that enable reliable storage at low voltages without modifying hard- ware, which can reduce energy consumption by 30%. Then, we address the file erasures recovery problem in flash memories. Instead of only using traditional error- correcting codes, we design a new content-assisted decoder (CAD) to recover text files. The new CAD can be combined with the existing error-correcting codes and the experiment results show CAD outperforms the traditional error-correcting codes.
|
2 |
Coding Techniques for Error Correction and Rewriting in Flash MemoriesMohammed, Shoeb Ahmed 2010 August 1900 (has links)
Flash memories have become the main type of non-volatile memories. They
are widely used in mobile, embedded and mass-storage devices. Flash memories store
data in floating-gate cells, where the amount of charge stored in cells – called cell levels
– is used to represent data. To reduce the level of any cell, a whole cell block (about
106 cells) must be erased together and then reprogrammed. This operation, called
block erasure, is very costly and brings significant challenges to cell programming and
rewriting of data. To address these challenges, rank modulation and rewriting codes
have been proposed for reliably storing and modifying data. However, for these new
schemes, many problems still remain open.
In this work, we study error-correcting rank-modulation codes and rewriting
codes for flash memories. For the rank modulation scheme, we study a family of one-
error-correcting codes, and present efficient encoding and decoding algorithms. For
rewriting, we study a family of linear write-once memory (WOM) codes, and present
an effective algorithm for rewriting using the codes. We analyze the performance of
our solutions for both schemes.
|
Page generated in 0.0987 seconds