Spelling suggestions: "subject:"raonament basat een casos"" "subject:"raonament basat een vasos""
1 |
Expressivity-aware tempo transformations of music performances using case based reasoningGrachten, Maarten 05 November 2006 (has links)
La recerca presentada en aquesta dissertació glossa sobre transformacions de tempo de gravacions monofòniques de saxo jazz preservant l'expressivitat musical. Es una contribució al processament d'audio basat en el contingut, un camp de recerca que ha emergit recentment com a resposta a la necessitat creixent de gestionar intel·ligentment la creixent quantitat d'informació digital multimedia disponible actualment. S'ha investigat com una execució musical, tocada a un tempo concret, es pot reproduir automàticament a un altre tempo mantenint l'expressivitat. Aquest problema no es pot reduir a aplicar una transformació uniforme a totes les notes de la melodia, operació que degradaria la qualitat de l'execució. Proposem un sistema de raonament basat en casos per a transformacions de tempo preservant l'expressivitat. La validació del sistema mostra un comportament superior a la transformació uniforme. A m'es, s'han fet contribucions a l'anàlisi de gravacions expressives, CBR, recuperació de melodies i metodologires d'evaluació de models d'expressivitat. / The research presented in this dissertation focuses on expressivity-aware tempo transformations of monophonic audio recordings of saxophone jazz performances. It is a contribution to content-based audio processing, a field of technology that has recently emerged as an answer to the increased need to deal intelligently with the evergrowing amount of digital multimedia information available nowadays. We have investigated the problem of how a musical performance played at a particular tempo can be rendered automatically at another tempo, while preserving naturally sounding expressivity. This problem cannot be reduced to just applying a uniform transformation to all notes of the melody, since it often degrades the musical quality of the performance. We present a case-based reasoning system for expressivity aware tempo transformations. A validation of the system showed superior results compared to uniform transformation. Furthermore, contributions have been made to expressive performance analysis, CBR, melody retrieval, and evaluation methodologies of expressive models.
|
2 |
Marc integrador de les capacitats de Soft-Computing i de Knowledge Discovery dels Mapes Autoorganitzatius en el Raonament Basat en CasosFornells Herrera, Albert 14 December 2007 (has links)
El Raonament Basat en Casos (CBR) és un paradigma d'aprenentatge basat en establir analogies amb problemes prèviament resolts per resoldre'n de nous. Per tant, l'organització, l'accés i la utilització del coneixement previ són aspectes claus per tenir èxit en aquest procés. No obstant, la majoria dels problemes reals presenten grans volums de dades complexes, incertes i amb coneixement aproximat i, conseqüentment, el rendiment del CBR pot veure's minvat degut a la complexitat de gestionar aquest tipus de coneixement. Això ha fet que en els últims anys hagi sorgit una nova línia de recerca anomenada Soft-Computing and Intelligent Information Retrieval enfocada en mitigar aquests efectes. D'aquí neix el context d'aquesta tesi.Dins de l'ampli ventall de tècniques Soft-Computing per tractar coneixement complex, els Mapes Autoorganitzatius (SOM) destaquen sobre la resta per la seva capacitat en agrupar les dades en patrons, els quals permeten detectar relacions ocultes entre les dades. Aquesta capacitat ha estat explotada en treballs previs d'altres investigadors, on s'ha organitzat la memòria de casos del CBR amb SOM per tal de millorar la recuperació dels casos.La finalitat de la present tesi és donar un pas més enllà en la simple combinació del CBR i de SOM, de tal manera que aquí s'introdueixen les capacitats de Soft-Computing i de Knowledge Discovery de SOM en totes les fases del CBR per nodrir-les del nou coneixement descobert. A més a més, les mètriques de complexitat apareixen en aquest context com un instrument precís per modelar el funcionament de SOM segons la tipologia de les dades. L'assoliment d'aquesta integració es pot dividir principalment en quatre fites: (1) la definició d'una metodologia per determinar la millor manera de recuperar els casos tenint en compte la complexitat de les dades i els requeriments de l'usuari; (2) la millora de la fiabilitat de la proposta de solucions gràcies a les relacions entre els clústers i els casos; (3) la potenciació de les capacitats explicatives mitjançant la generació d'explicacions simbòliques; (4) el manteniment incremental i semi-supervisat de la memòria de casos organitzada per SOM.Tots aquests punts s'integren sota la plataforma SOMCBR, la qual és extensament avaluada sobre datasets provinents de l'UCI Repository i de dominis mèdics i telemàtics.Addicionalment, la tesi aborda de manera secundària dues línies de recerca fruït dels requeriments dels projectes on ha estat ubicada. D'una banda, s'aborda la definició de funcions de similitud específiques per definir com comparar un cas resolt amb un de nou mitjançant una variant de la Computació Evolutiva anomenada Evolució de Gramàtiques (GE). D'altra banda, s'estudia com definir esquemes de cooperació entre sistemes heterogenis per millorar la fiabilitat de la seva resposta conjunta mitjançant GE. Ambdues línies són integrades en dues plataformes, BRAIN i MGE respectivament, i són també avaluades amb els datasets anteriors. / El Razonamiento Basado en Casos (CBR) es un paradigma de aprendizaje basado en establecer analogías con problemas previamente resueltos para resolver otros nuevos. Por tanto, la organización, el acceso y la utilización del conocimiento previo son aspectos clave para tener éxito. No obstante, la mayoría de los problemas presentan grandes volúmenes de datos complejos, inciertos y con conocimiento aproximado y, por tanto, el rendimiento del CBR puede verse afectado debido a la complejidad de gestionarlos. Esto ha hecho que en los últimos años haya surgido una nueva línea de investigación llamada Soft-Computing and Intelligent Information Retrieval focalizada en mitigar estos efectos. Es aquí donde nace el contexto de esta tesis.Dentro del amplio abanico de técnicas Soft-Computing para tratar conocimiento complejo, los Mapas Autoorganizativos (SOM) destacan por encima del resto por su capacidad de agrupar los datos en patrones, los cuales permiten detectar relaciones ocultas entre los datos. Esta capacidad ha sido aprovechada en trabajos previos de otros investigadores, donde se ha organizado la memoria de casos del CBR con SOM para mejorar la recuperación de los casos.La finalidad de la presente tesis es dar un paso más en la simple combinación del CBR y de SOM, de tal manera que aquí se introducen las capacidades de Soft-Computing y de Knowledge Discovery de SOM en todas las fases del CBR para alimentarlas del conocimiento nuevo descubierto. Además, las métricas de complejidad aparecen en este contexto como un instrumento preciso para modelar el funcionamiento de SOM en función de la tipología de los datos. La consecución de esta integración se puede dividir principalmente en cuatro hitos: (1) la definición de una metodología para determinar la mejor manera de recuperar los casos teniendo en cuenta la complejidad de los datos y los requerimientos del usuario; (2) la mejora de la fiabilidad en la propuesta de soluciones gracias a las relaciones entre los clusters y los casos; (3) la potenciación de las capacidades explicativas mediante la generación de explicaciones simbólicas; (4) el mantenimiento incremental y semi-supervisado de la memoria de casos organizada por SOM. Todos estos puntos se integran en la plataforma SOMCBR, la cual es ampliamente evaluada sobre datasets procedentes del UCI Repository y de dominios médicos y telemáticos.Adicionalmente, la tesis aborda secundariamente dos líneas de investigación fruto de los requeri-mientos de los proyectos donde ha estado ubicada la tesis. Por un lado, se aborda la definición de funciones de similitud específicas para definir como comparar un caso resuelto con otro nuevo mediante una variante de la Computación Evolutiva denominada Evolución de Gramáticas (GE). Por otro lado, se estudia como definir esquemas de cooperación entre sistemas heterogéneos para mejorar la fiabilidad de su respuesta conjunta mediante GE. Ambas líneas son integradas en dos plataformas, BRAIN y MGE, las cuales también son evaluadas sobre los datasets anteriores. / Case-Based Reasoning (CBR) is an approach of machine learning based on solving new problems by identifying analogies with other previous solved problems. Thus, organization, access and management of this knowledge are crucial issues for achieving successful results. Nevertheless, the major part of real problems presents a huge amount of complex data, which also presents uncertain and partial knowledge. Therefore, CBR performance is influenced by the complex management of this knowledge. For this reason, a new research topic has appeared in the last years for tackling this problem: Soft-Computing and Intelligent Information Retrieval. This is the point where this thesis was born.Inside the wide variety of Soft-Computing techniques for managing complex data, the Self-Organizing Maps (SOM) highlight from the rest due to their capability for grouping data according to certain patterns using the relations hidden in data. This capability has been used in a wide range of works, where the CBR case memory has been organized with SOM for improving the case retrieval.The goal of this thesis is to take a step up in the simple combination of CBR and SOM. This thesis presents how to introduce the Soft-Computing and Knowledge Discovery capabilities of SOM inside all the steps of CBR to promote them with the discovered knowledge. Furthermore, complexity measures appear in this context as a mechanism to model the performance of SOM according to data topology. The achievement of this goal can be split in the next four points: (1) the definition of a methodology for setting up the best way of retrieving cases taking into account the data complexity and user requirements; (2) the improvement of the classification reliability through the relations between cases and clusters; (3) the promotion of the explaining capabilities by means of the generation of symbolic explanations; (4) the incremental and semi-supervised case-based maintenance. All these points are integrated in the SOMCBR framework, which has been widely tested in datasets from UCI Repository and from medical and telematic domains. Additionally, this thesis secondly tackles two additional research lines due to the requirements of a project in which it has been developed. First, the definition of similarity functions ad hoc a domain is analyzed using a variant of the Evolutionary Computation called Grammar Evolution (GE). Second, the definition of cooperation schemes between heterogeneous systems is also analyzed for improving the reliability from the point of view of GE. Both lines are developed in two frameworks, BRAIN and MGE respectively, which are also evaluated over the last explained datasets.
|
3 |
Case based reasoning as an extension of fault dictionary methods for linear electronic analog circuits diagnosisPous i Sabadí, Carles 12 July 2004 (has links)
El test de circuits és una fase del procés de producció que cada vegada pren més importància quan es desenvolupa un nou producte. Les tècniques de test i diagnosi per a circuits digitals han estat desenvolupades i automatitzades amb èxit, mentre que aquest no és encara el cas dels circuits analògics. D'entre tots els mètodes proposats per diagnosticar circuits analògics els més utilitzats són els diccionaris de falles. En aquesta tesi se'n descriuen alguns, tot analitzant-ne els seus avantatges i inconvenients.Durant aquests últims anys, les tècniques d'Intel·ligència Artificial han esdevingut un dels camps de recerca més importants per a la diagnosi de falles. Aquesta tesi desenvolupa dues d'aquestes tècniques per tal de cobrir algunes de les mancances que presenten els diccionaris de falles. La primera proposta es basa en construir un sistema fuzzy com a eina per identificar. Els resultats obtinguts son força bons, ja que s'aconsegueix localitzar la falla en un elevat tant percent dels casos. Per altra banda, el percentatge d'encerts no és prou bo quan a més a més s'intenta esbrinar la desviació.Com que els diccionaris de falles es poden veure com una aproximació simplificada al Raonament Basat en Casos (CBR), la segona proposta fa una extensió dels diccionaris de falles cap a un sistema CBR. El propòsit no és donar una solució general del problema sinó contribuir amb una nova metodologia. Aquesta consisteix en millorar la diagnosis dels diccionaris de falles mitjançant l'addició i l'adaptació dels nous casos per tal d'esdevenir un sistema de Raonament Basat en Casos. Es descriu l'estructura de la base de casos així com les tasques d'extracció, de reutilització, de revisió i de retenció, fent èmfasi al procés d'aprenentatge.En el transcurs del text s'utilitzen diversos circuits per mostrar exemples dels mètodes de test descrits, però en particular el filtre biquadràtic és l'utilitzat per provar les metodologies plantejades, ja que és un dels benchmarks proposats en el context dels circuits analògics. Les falles considerades son paramètriques, permanents, independents i simples, encara que la metodologia pot ser fàcilment extrapolable per a la diagnosi de falles múltiples i catastròfiques. El mètode es centra en el test dels components passius, encara que també es podria extendre per a falles en els actius. / Testing circuits is a stage of the production process that is becoming more and more important when a new product is developed. Test and diagnosis techniques for digital circuits have been successfully developed and automated. But, this is not yet the case for analog circuits. Even though there are plenty of methods proposed for diagnosing analog electronic circuits, the most popular are the fault dictionary techniques. In this thesis some of these methods, showing their advantages and drawbacks, are analyzed.During these last decades automating fault diagnosis using Artificial Intelligence techniques has become an important research field. This thesis develops two of these techniques in order to fill in some gaps in fault dictionaries techniques. The first proposal is to build a fuzzy system as an identification tool. The results obtained are quite good, since the faulty component is located in a high percentage of the given cases. On the other hand, the percentage of successes when determining the component's exact deviation is far from being good.As fault dictionaries can be seen as a simplified approach to Case-Based Reasoning, the second proposal extends the fault dictionary towards a Case Based Reasoning system. The purpose isnot to give a general solution, but to contribute with a new methodology. This second proposal improves a fault dictionary diagnosis by means of adding and adapting new cases to develop aCase Based Reasoning system. The case base memory, retrieval, reuse, revise and retain tasks are described. Special attention to the learning process is taken.Several circuits are used to show examples of the test methods described throughout the text. But, in particular, the biquadratic filter is used to test the proposed methodology because it isdefined as one of the benchmarks in the analog electronic diagnosis domain. The faults considered are parametric, permanent, independent and simple, although the methodology can be extrapolated to catastrophic and multiple fault diagnosis. The method is only focused and tested on passive faulty components, but it can be extended to cover active devices as well.
|
Page generated in 0.0764 seconds