• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 133
  • 65
  • 51
  • 40
  • 34
  • 11
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 416
  • 416
  • 114
  • 77
  • 69
  • 62
  • 59
  • 57
  • 51
  • 51
  • 41
  • 35
  • 33
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Ein Doppelschneckenextruder zur Materialdosierung in einem Rapid Prototyping-Prozess

Flath, Tobias, Schulze, Fritz Peter, Neunzehn, Jörg, Wiesmann, Hans-Peter, Hacker, Michael C., Schulz-Siegmund, Michaela January 2016 (has links)
Aus der Einleitung: "Im Tissue Engineering und in der Medizintechnik gewinnt das Rapid Prototyping (RP), das zu den additiven Fertigungsverfahren zählt, zunehmend an Bedeutung (Zhang, et al. 2015) (Li, et al. 2014). Für die Verarbeitung von thermoplastischen Biopolymeren ist das Fused Deposition Modeling (FDM, schematische Darstellung in Abbildung 1) von zentralem Stellenwert. ..."
132

Analyse und Automatisierung von inkrementellen elektromagnetischen Umformprozessen

Linnemann, Maik 21 December 2022 (has links)
Aktuelle gesellschaftliche und politische Forderungen an die Produktionstechnik wie Nachhaltigkeit und Klimaschutz können bei der Fertigung flächiger Bauteile durch innovative Blechumformverfahren erreicht werden. Durch geschickte Kombinationen von inkrementellen und elektromagnetischen Fertigungsverfahren besteht hier besonders großes Potential. Aus diesem Grund wird im Rahmen dieser Arbeit die Erweiterung der elektromagnetischen Umformung um einen inkrementellen Ansatz untersucht. Dazu wird ein geeigneter Versuchsaufbau entwickelt und für eine ausführliche Prozessanalyse genutzt. Zusätzlich werden effiziente numerische Prozessmodelle entwickelt um eine schnelle Bestimmung weiterer Prozessgrößen zu ermöglichen. Im Ergebnis resultieren Hinweise mit denen das neuartige Verfahren auf beliebige Bauteile angewendet werden kann.
133

Stereolithography Characterization for Surface Finish Improvement: Inverse Design Methods for Process Planning

Sager, Benay 11 April 2006 (has links)
To facilitate the transition of Stereolithography (SLA) into the manufacturing domain and to increase its appeal to the micro manufacturing industry, process repeatability and surface finish need to be improved. Researchers have mostly focused on improving SLA surface finish within the capabilities of commercially available SLA machines. The capabilities of these machines are limited and a machine-specific approach for improving surface finish is based purely on empirical data. In order to improve surface finish of the SLA process, a more systematic approach that will incorporate process parameters is needed. To achieve this, the contribution of different laser and process parameters, such as laser beam angle, irradiance distribution, and scan speed, to SLA resolution and indirectly to surface finish, need to be quantified and incorporated into an analytical model. In response, a dynamic analytical SLA cure model has been developed. This model has been applied to SLA geometries of interest. Using flat surfaces, the efficacy of the model has been computationally and experimentally demonstrated. The model has been applied to process planning as a computational inverse design method by using parameter estimation techniques, where surface finish improvement on slanted surfaces has been achieved. The efficacy of this model and its improvement over the traditional cure models has been demonstrated computationally and experimentally. Based on the experimental results, use of the analytical model in process planning achieves an order of magnitude improvement in surface roughness average of SLA parts. The intellectual contributions of this research are the development of an analytical SLA cure model and the application of this model to process planning along with inverse design techniques for parameter estimation and subsequent surface finish improvement.
134

Možnosti uplatnění moderních metod při výrobě prototypových odlitků / Possibilities of using modern methods in manufacturing of prototype castings

Šmíd, Jiří January 2011 (has links)
The introduction part of the thesis focuses on the overview of rapid prototyping in foundry industry. Principles of the most important RP methods are described and the FDM method is analyzed in more detail. This method was used in the practical part for the production of wax patterns with silicone moulds. The wax patterns were used for the production of castings using the lost wax method. The result of this work is determination of dimensional changes during the whole process of casting manufacture from the drawing to the final casting.
135

Three-dimensional plotted hydroxyapatite scaffolds with predefined architecture: comparison of stabilization by alginate cross-linking versus sintering

Kumar, Alok, Akkineni, Ashwini R., Basu, Bikramjit, Gelinsky, Michael 11 October 2019 (has links)
Scaffolds for bone tissue engineering are essentially characterized by porous three-dimensional structures with interconnected pores to facilitate the exchange of nutrients and removal of waste products from cells, thereby promoting cell proliferation in such engineered scaffolds. Although hydroxyapatite is widely being considered for bone tissue engineering applications due to its occurrence in the natural extracellular matrix of this tissue, limited reports are available on additive manufacturing of hydroxyapatite-based materials. In this perspective, hydroxyapatite-based three-dimensional porous scaffolds with two different binders (maltodextrin and sodium alginate) were fabricated using the extrusion method of three-dimensional plotting and the results were compared in reference to the structural properties of scaffolds processed via chemical stabilization and sintering routes, respectively. With the optimal processing conditions regarding to pH and viscosity of binder-loaded hydroxyapatite pastes, scaffolds with parallelepiped porous architecture having up to 74% porosity were fabricated. Interestingly, sintering of the as-plotted hydroxyapatite–sodium alginate (cross-linked with CaCl₂ solution) scaffolds led to the formation of chlorapatite (Ca₉.₅₄P₅.₉₈O₂₃.₈Cl₁.₆₀(OH)₂.₇₄). Both the sintered scaffolds displayed progressive deformation and delayed fracture under compressive loading, with hydroxyapatite–alginate scaffolds exhibiting a higher compressive strength (9.5±0.5 MPa) than hydroxyapatite–maltodextrin scaffolds (7.0±0.6 MPa). The difference in properties is explained in terms of the phase assemblage and microstructure
136

A calculation concept to reduce manufacturing cost on laser sintering machines

Starz, Anton Johannes January 2008 (has links)
Thesis (M. Tech.) - Central University of Technology, Free State, 2008 / A company’s ability to produce products faster and more economically may lead to a competitive edge in the international market. The reduction of development costs and shortened development time will undeniably depend on effective organisational structures that are based on effective information- and communication techniques and manufacturing technologies. An innovative manufacturing technology that impacts on rapid product development is Rapid Prototyping (RP). The Centre for Rapid Prototyping and Manufacturing (CRPM) works closely with South African companies, supporting them with common mechanical engineering solutions and specialising in the manufacturing of prototypes. One of the options offered in the manufacture of prototypes is the Laser Sintering (LS) process. It is however, difficult to determine the product cost for the building volume used to manufacture the prototypes. Prototypes from different clients can be manufactured at the same time in the same process. The problem however, is how to calculate the costs for each prototype and to offer the clients an accurate quotation for the manufacture of the prototype. Therefore, it is necessary to design a calculation concept, which includes all accrued costs and allocate these to the different parts/prototypes. As it is problematic to calculate the manufacturing cost of prototypes, it is necessary to analyse all the effects, parameters and influences on the manufacturing process in order to determine the manufacturing time, and ultimately the machine costs. This is needed to calculate the total cost of one platform and the cost of each individual part. The project, through various experiments determined how to allocate the costs, through a correlation between part volume and platform height. The aim of the study was to determine a calculation concept to estimate the total platform cost and the cost of each individual part. Furthermore, the estimated cost was compared with the actual cost to determine the deviation between the calculation methods, and lead to a calculation concept that can be used to predict and reduce the manufacturing costs. The results obtained from the research were used for an exact calculation and reduction of prototype unit costs manufactured on LS machines, which gave three basic advantages: * Manufacturing costs were reduced to benefit clients, which meant that they could invest more in the design of new prototypes and products, to improve customer satisfaction * Prototype manufacturing on expensive RP machines could be optimised by using more prototypes and lower costs for entering the market. * The calculation risk could be minimised, which lowered the risk of losing money on a project and resulted in better planning for available resources.
137

Time and cost assessment of the manufacturing of tooling by metal casting in rapid prototyping sand moulds

Nyembwe, K., De Beer, D., Van der Walt, K., Bhero, S. January 2011 (has links)
Published Article / In this paper the time and cost parameters of tooling manufacturing by metal casting in rapid prototyping sand moulds are assessed and comparison is made with alternative tool making processes such as computer numerical control machining and investment casting (Paris Process). To that end two case studies obtained from local companies were carried out. The tool manufacturing was conducted according to a five steps process chain referred to as Rapid Casting for Tooling (RCT). These steps include CAD modelling, casting simulation, rapid prototyping, metal casting and finishing operations. In particular the Rapid Prototyping (RP) step for producing the sand moulds was achieved with the aid of an EOSINT S 550 Laser Sintering machine and a Spectrum 510 Three Dimensional Printer. The results indicate that RP is the rate determining step and cost driver of the proposed tooling manufacturing technique. In addition it was found that this tool making process is faster but more expensive than machining and investment casting.
138

Rapid die manufacturing using direct laser metal deposition

Pereira, M.F.V.T., Williams, M., Bruwer, R. January 2009 (has links)
Published Article / Global issues such as energy and climate changes have impacted on both the automotive and aerospace industries, forcing them to adopt measures to produce products that consume fewer combustibles and emit less carbon dioxide. Making vehicles lighter is one of the logical ways of reducing fuel consumption. The need for light components, able to fulfil technical and quality specifications, led to market growth for tooling that is able to mass produce parts using manufacturing processes such as high pressure die casting. Competitive pressures to reduce the lead time required for tooling-up has also increased dramatically. For this reason research into various methods, techniques and approaches to tool manufacture is being undertaken globally. This paper highlights the work undertaken at the CSIR on the issue of rapid die manufacturing through the application and evaluation of a rapid prototyping technique and coating technologies applied to die components of a high pressure casting die for the production of aluminium components. Criteria for determining suitability were developed against which the technique was evaluated that included time, cost and life-expectancy. Results of accelerated testing procedures to evaluate the die material produced by the rapid prototyping technique and surface coatings and treatments of die materials for their resistance to washout, erosion, heat checking and corrosion in a high pressure die casting environment, are presented. The outcomes of this research will be used for further development and application of specific techniques, design principles and criteria for this approach.
139

Development of an experimental diaphragm valve used for velocity profiling of such devices

Humphreys, P., Erfort, E., Fester, V., Chhiba, M., Kotze, R., Philander, O., Sam, M. January 2010 (has links)
Published Article / The design, manufacture and use of diaphragm valves in the minerals industry is becoming increasingly important since this sector is restricted from using excessive amounts of water for their operations. This forces a change in the flow properties of these devices from turbulent to laminar in nature and thus necessitates the characterization of these flows for future designs. Furthermore, diaphragm valves have a short service life due to a variety of reasons that includes the abrasive nature of the flow environment. This paper describes the activities of the Adaptronics Advanced Manufacturing Technology Laboratory (AMTL) at the Cape Peninsula University of Technology in the research and development of diaphragm valves using rapid prototyping technologies. As a first step, an experimental diaphragm valve was reverse engineered and retrofitted with ultrasonic transducers used in Ultrasonic Velocity Profiling (UVP) measurements. The use of this device enables measurements of velocity profiles to gain insight into the flow structure within the valve and the increased pressure losses generated within the valve. It also showed that components fabricated using the Z-Corporation machine could withstand the working environment of diaphragm valves. Research is now conducted on ultrasonic transducer placement in the device to further enhance the velocity profiling through the device. As a second step we produced a thin-walled stainless steel diaphragm valve using rapid prototyping technology and investment casting processes. A study of the durability of this device will be conducted and certain geometric and manufacturing aspects of this valve will be discussed.
140

Additive manufacture of tissue engineering scaffolds for bone and cartilage

Eshraghi, Shaun 07 January 2016 (has links)
Bone and cartilage constructs are often plagued with mechanical failure, poor nutrient transport, poor tissue ingrowth, and necrosis of embedded cells. However, advances in computer aided design (CAD) and computational modeling enable the design of scaffolds with complex internal michroarchitectures and the a priori prediction of their transport and mechanical properties, such that the design of constructs satisfying the needs of the tissue environment can be optimized. The goal of this research is to investigate the capability of additive manufacturing technologies to create designed microarchitectured tissue engineering scaffolds for bone and cartilage regeneration. This goal will be achieved by pursuing the following two objectives: (1) the manufacture of bioresorbable thermoplastic scaffolds by selective laser sintering (SLS) (2) and the manufacture of hydrogel scaffolds by large area maskless photopolymerization (LAMP). SLS is a laser based additive manufacturing method in which an object is built layer-by-layer by fusing powdered material using a computer-controlled scanning laser. LAMP is a massively parallel ultraviolet curing-based process that can be used to create hydrogels from a photomonomer on a large-scale (558x558mm) while maintaining extremely high feature resolution (20µm). In this research, SLS is used to process polycaprolactone (PCL) and composites of PCL with hydroxyapatite (HA) for bone tissue engineering applications while LAMP is used to process polyethylene glycol diacrylate (PEGDA) which can be used for hard and soft tissue applications.

Page generated in 0.3171 seconds