• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mécanisme moléculaire des NO-synthases bactériennes / Molecular mechanism of bacterial NO-synthases

Weisslocker-Schaetzel, Marine 18 November 2016 (has links)
Les NO-synthases sont des flavohémoprotéines responsables de la production de NO• chez les mammifères (mNOS). Elles se composent d’un domaine réductase, qui lie les cofacteurs FMN et FAD et le co-substrat NADPH, et d’un domaine oxygénase qui lie l’hème, le substrat L-arginine et le cofacteur redox essentiel tétrahydrobioptérine H4B. Ces quinze dernières années, plusieurs NOS d’origine bactérienne (bacNOS) ont été caractérisées et il a été montré qu’elles étaient semblables au domaine oxygénase de leurs homologues mammifères. Il existe cependant des différences significatives entre mNOS et bacNOS, la plus importante étant l’absence de domaine réductase chez les NOS d’origine bactérienne. De plus, le(s) mécanisme(s) catalytique(s) de ces dernières ainsi que leur(s) fonction(s) in vivo restent actuellement à déterminer. Plusieurs études publiées montrent que la substitution Val/Ile à proximité du site actif, conservée entre mNOS et bacNOS, est partiellement responsable des différences observées au niveau catalytique entre ces deux groupes. Dans le cadre de cette thèse, j’ai utilisé les spectroscopies d’absorption UV-visible et RPE, ainsi que des techniques de cinétiques rapides comme le stopped-flow et le freeze-quench, pour caractériser les deux mutants complémentaires bsNOS I224V et iNOS V346I afin de mieux comprendre l’influence de cette mutation. J’ai ainsi montré qu’il existait des différences fondamentales entre bacNOS et mNOS qui ne sont pas liées à la substitution Val/Ile et que ces deux familles d’enzymes suivent probablement des mécanismes catalytiques différents pour l’étape d’oxydation du NOHA. Ces résultats sont confirmés par l’étude de la NOS thermostable issue de Geobacillus stearothermophilus. Lorsqu’on s’intéresse au fonctionnement in vivo des bacNOS, se pose également la question de la nature du cofacteur redox puisque de nombreuses bactéries possédant une NOS n’ont pas la machinerie nécessaire à la synthèse de H4B ; c’est par exemple le cas de Deinococcus radiodurans pour qui l’utilisation du tétrahydrofolate H4F a été proposée. J’ai donc étudié et caractérisé deiNOS de manière approfondie en présence de différents cofacteurs afin de mieux comprendre leurs rôles redox et structural. Ceci a notamment permis de proposer un mécanisme catalytique légèrement différent de celui suivi par bsNOS ce qui suggère que ces enzymes pourraient avoir différentes fonctions in vivo. Enfin, la première caractérisation in vitro d’une NOS de plante, issue de l’algue verte unicellulaire Ostreococcus tauri est présentée dans ce manuscrit. Les résultats suggèrent que celle-ci aurait effectivement une activité NO-synthase in vivo. / NO-synthases are flavohemoproteins responsible for NO• production in mammals (mNOS). They are comprised of a reductase domain, that binds FMN, FAD and NADPH, and an oxygenase domain, that binds heme, the substrate L-arginine and the essential redox active tetrahydrobiopterin cofactor H4B. In the last 15 years, several bacterial NOS (bacNOS) have been characterized and shown to resemble the oxygenase domain of their mammalian counterpart. However bacNOS exhibit significant differences from mNOS, the most striking one being the lack of a reductase domain, and their catalytic mechanism(s) and in vivo function(s) are currently poorly understood. Previously published studies suggest that a conserved Val to Ile substitution near the active site is at least partially responsible for the differences in catalysis observed between mNOS and bacNOS. During my PhD I characterized the mutants on this particular position, bsNOS I224V and iNOS V346I, using UV-visible and EPR spectroscopies as well as rapid-kinetic technics such as stopped-flow spectrophotometry and rapid-freeze quench, to better understand the influence of this substitution. This showed that mammalian and bacterial enzymes are fundamentally different and probably follow different mechanisms for NOHA oxidation. Results from studying the thermostable NOS from Geobacillus stearothermophilus further confirm these observations. Another important issue regarding bacNOS functioning in vivo concerns the nature of the redox active cofactor since many NOS-containing bacteria do not have the machinery for H4B biosynthesis; this is for instance the case of Deinococcus radiodurans for which the use of tetrahydrofolate H4F has been proposed. I therefore performed an extensive characterization of deiNOS in the presence of various cofactors to better understand their redox and structural roles. This allowed proposing a slightly different mechanism for deiNOS, compared to bsNOS, suggesting different function(s) in vivo. Finally, the first in vitro characterization of a plant NOS from the unicellular green alga Ostreococcus tauri is reported in this manuscript. The results suggest that this NOS-like protein is indeed a genuine NO-synthase.
2

Multifaceted Mechanism of Amicoumacin A Inhibition of Bacterial Translation

Maksimova, Elena M., Vinogradova, Daria S., Osterman, Ilya A., Kasatsky, Pavel S., Nikonov, Oleg S., Milón, Pohl, Dontsova, Olga A., Sergiev, Petr V., Paleskava, Alena, Konevega, Andrey L. 12 February 2021 (has links)
Amicoumacin A (Ami) halts bacterial growth by inhibiting the ribosome during translation. The Ami binding site locates in the vicinity of the E-site codon of mRNA. However, Ami does not clash with mRNA, rather stabilizes it, which is relatively unusual and implies a unique way of translation inhibition. In this work, we performed a kinetic and thermodynamic investigation of Ami influence on the main steps of polypeptide synthesis. We show that Ami reduces the rate of the functional canonical 70S initiation complex (IC) formation by 30-fold. Additionally, our results indicate that Ami promotes the formation of erroneous 30S ICs; however, IF3 prevents them from progressing towards translation initiation. During early elongation steps, Ami does not compromise EF-Tu-dependent A-site binding or peptide bond formation. On the other hand, Ami reduces the rate of peptidyl-tRNA movement from the A to the P site and significantly decreases the amount of the ribosomes capable of polypeptide synthesis. Our data indicate that Ami progressively decreases the activity of translating ribosomes that may appear to be the main inhibitory mechanism of Ami. Indeed, the use of EF-G mutants that confer resistance to Ami (G542V, G581A, or ins544V) leads to a complete restoration of the ribosome functionality. It is possible that the changes in translocation induced by EF-G mutants compensate for the activity loss caused by Ami. / Russian Foundation for Basic Research / Revisión por pares
3

Characterization of Epoxide Hydrolases from Yeast and Potato

Tronstad-Elfström, Lisa January 2005 (has links)
<p>Epoxides are three-membered cyclic ethers formed in the metabolism of foreign substances and as endogenous metabolites. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to yield the corresponding diols. EHs have been implicated in diverse functions such as detoxification of various toxic epoxides, as well as regulation of signal substance levels.</p><p>The main goal of this thesis was to investigate and characterize the α/β hydrolase fold EH. The first part concerns the identifictaion of an EH in <i>Saccharomyces cerevisiae</i>. The second part involves detailed mechanistic and structural studies of a plant EH from potato, StEH1. </p><p>Despite the important function of EH, no EH has previously been established in <i>S. cerevisiae</i>. By sequence analysis, we have identified a new subclass of EH present in yeast and in a wide range of microorganisms. The <i>S. cerevisiae</i> protein was produced recombinantly and was shown to display low catalytic activity with tested epoxide substrates. </p><p>In plants, EHs are involved in the general defence system, both in the metabolism of the cutin layer and in stress response to pathogens. The catalytic mechanism of recombinantly expressed wild type and mutant potato EH were investigated in detail using the two enantiomers of <i>trans</i>-stilbene oxide (TSO). The proposed catalytic residues of StEH1 were confirmed. StEH1 is slightly enantioselective for the <i>S,S</i>-enantiomer of<i> trans</i>-stilbene oxide. Furthermore, distinct pH dependence of the two enantiomers probably reflects differences in the microscopic rate constants of the substrates. The detailed function of the two catalytic tyrosines was also studied. The behavior of the tyrosine pair resembles that of a bidentate Lewis acid and we conclude that these tyrosines function as Lewis acids rather then proton donors.</p><p>The three dimensional structure of StEH1 was solved, representing the first structure of a plant EH. The structure provided information about the substrate specificity of StEH1.</p>
4

Characterization of Epoxide Hydrolases from Yeast and Potato

Tronstad-Elfström, Lisa January 2005 (has links)
Epoxides are three-membered cyclic ethers formed in the metabolism of foreign substances and as endogenous metabolites. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to yield the corresponding diols. EHs have been implicated in diverse functions such as detoxification of various toxic epoxides, as well as regulation of signal substance levels. The main goal of this thesis was to investigate and characterize the α/β hydrolase fold EH. The first part concerns the identifictaion of an EH in Saccharomyces cerevisiae. The second part involves detailed mechanistic and structural studies of a plant EH from potato, StEH1. Despite the important function of EH, no EH has previously been established in S. cerevisiae. By sequence analysis, we have identified a new subclass of EH present in yeast and in a wide range of microorganisms. The S. cerevisiae protein was produced recombinantly and was shown to display low catalytic activity with tested epoxide substrates. In plants, EHs are involved in the general defence system, both in the metabolism of the cutin layer and in stress response to pathogens. The catalytic mechanism of recombinantly expressed wild type and mutant potato EH were investigated in detail using the two enantiomers of trans-stilbene oxide (TSO). The proposed catalytic residues of StEH1 were confirmed. StEH1 is slightly enantioselective for the S,S-enantiomer of trans-stilbene oxide. Furthermore, distinct pH dependence of the two enantiomers probably reflects differences in the microscopic rate constants of the substrates. The detailed function of the two catalytic tyrosines was also studied. The behavior of the tyrosine pair resembles that of a bidentate Lewis acid and we conclude that these tyrosines function as Lewis acids rather then proton donors. The three dimensional structure of StEH1 was solved, representing the first structure of a plant EH. The structure provided information about the substrate specificity of StEH1.

Page generated in 0.0685 seconds