Spelling suggestions: "subject:"état "" "subject:"stat ""
371 |
Účinky vybraných flavonolygnanů silymarinu ex vivo na izolované aortě potkana / The ex vivo effects of selected silymarin flavonolygnans on isolated rat aortaSloukgi, Tatiana January 2020 (has links)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Tatiana Sloukgi Supervisor: PharmDr. Jana Pourová, Ph.D. Title of Diploma Thesis: The effect of Silymarin Flavonolignans and their sulfated conjugates on blood vessels ex vivo. Silymarin flavonolignans have recently shown some positive effects on the cardiovascular system. In this work, we studied the vasodilatory effect on rat aorta ex vivo of three silymarin conjugates, silybin A-20-sulfate, silybin B-20-sulfate and 2,3- dehydrosilychristin-19-O-sulfate, and one parent flavonolignan 2,3- dehydrosilychristin. For each substance, a concentration response curve was created and the concentration that produces 50% of maximum relaxation was determined (EC50). All substances exerted very low or no vasodilatory activity. Finally, we focused on the mechanism of action of silybin A. We tested whether its vasorelaxant activity depends on the presence of intact endothelium. The vasorelaxant effect of silybin A on isolated rat aorta ex vivo was clearly endothelium-dependent.
|
372 |
Effects of m-CPP in Altering Neuronal Function: Blocking Depolarization in Invertebrate Motor and Sensory Neurons but Exciting Rat Dorsal Horn NeuronsSparks, Garrett M., Brailoiu, Eugen, Brailoiu, G. Cristina, Dun, Nae J., Tabor, Jami, Cooper, Robin L. 18 April 2003 (has links)
The compound m-chlorophenylpiperazine (m-CPP) is used clinically to manipulate serotonergic function, though its precise mechanisms of actions are not well understood. m-CPP alters synaptic transmission and neuronal function in vertebrates by non-selective agonistic actions on 5-HT1 and 5-HT2 receptors. In this study, we demonstrated that m-CPP did not appear to act through a 5-HT receptor in depressing neuronal function in the invertebrates (crayfish and Drosophila). Instead, m-CPP likely decreased sodium influx through voltage-gated sodium channels present in motor and primary sensory neurons. Intracellular axonal recordings showed that m-CPP reduced the amplitude of the action potentials in crayfish motor neurons. Quantal analysis of excitatory postsynaptic currents, recorded at neuromuscular junctions (NMJ) of crayfish and Drosophila, indicated a reduction in the number of presynaptic vesicular events, which produced a decrease in mean quantal content. m-CPP also decreased activity in primary sensory neurons in the crayfish. In contrast, serotonin produces an increase in synaptic strength at the crayfish NMJ and an increase in activity of sensory neurons; it produces no effect at the Drosophila NMJ. In the rat spinal cord, m-CPP enhances the occurrence of spontaneous excitatory postsynaptic potentials with no alteration in evoked currents.
|
373 |
Functional and Biological Determinants Affecting the Duration of Action and Efficacy of Anti-(+)-Methamphetamine Monoclonal Antibodies in RatsLaurenzana, Elizabeth M., Hendrickson, Howard P., Carpenter, Dylan, Peterson, Eric C., Gentry, W. Brooks, West, Michael, Che, Yingni, Carroll, F. Ivy, Owens, S. Michael 23 November 2009 (has links)
These studies examined the in vivo pharmacokinetics and efficacy of five anti-methamphetamine monoclonal antibodies (mAbs, KD values from 11 to 250 nM) in rats. While no substantive differences in mAb systemic clearance (t1/2 = 6.1-6.9 days) were found, in vivo function was significantly reduced within 1-3 days for four of the five mAbs. Only mAb4G9 was capable of prolonged efficacy, as judged by prolonged high methamphetamine serum concentrations. MAb4G9 also maintained high amphetamine serum concentrations, along with reductions in methamphetamine and amphetamine brain concentrations, indicating neuroprotection. The combination of broad specificity for methamphetamine-like drugs, high affinity, and prolonged action in vivo suggests mAb4G9 is a potentially efficacious medication for treating human methamphetamine-related medical diseases.
|
374 |
Effect of Inflammation on Kidney Function and Pharmacokinetics of COX-2 Selective Nonsteroidal Anti-Inflammatory Drugs Rofecoxib and MeloxicamHarirforoosh, Sam, Jamali, Fakhreddin 01 October 2008 (has links)
Chronic arthritis adversely affects glomerular function and nonsteroidal anti-inflammatory drugs (NSAIDs) reduce electrolyte urinary excretion. In addition, both acute and chronic inflammations may alter clearance of drugs. We studied (a) the effects of inflammation on the renal function and pharmacokinetics of rofecoxib and meloxicam; (b) whether inflammation could exacerbate reduced electrolytes excretion changes observed with NSAIDs; and (c) the influence of inflammation on distribution of these drugs into the kidney. Single oral doses of rofecoxib (10 mg kg-1), meloxicam (3 mg kg -1) or placebo were administered to normal or pre-adjuvant arthritic rats. Blood and urine samples were collected for the measurement of plasma nitrite, BUN and creatinine. The urinary excretion of sodium and potassium was also determined. Nitrite, BUN and plasma creatinine were increased starting on day 9 in the groups with inflammation. Sodium and potassium excretion rates were not affected by inflammation. Meloxicam did not alter the electrolyte excretion in any of the groups. Rofecoxib significantly decreased sodium and potassium excretion in normal rats and potassium excretion in inflamed rats. Inflammation significantly increased plasma concentrations of rofecoxib, but not meloxicam. The ratios of the kidney:plasma concentrations were not significantly altered by inflammation following either drug. Inflammation altered kidney function, demonstrated by increases in BUN and plasma creatinine. However, it did not influence the urinary electrolytes excretion. Since we have observed similar patterns of the effect of NSAIDs on kidney under healthy and inflammatory conditions, one may conclude that inflammation does not exacerbate the adverse effect.
|
375 |
Pharmacokinetics of Fungal (1-3)-β-D-Glucans Following Intravenous Administration in RatsRice, Peter J., Lockhart, Brent E., Barker, Luke A., Adams, Elizabeth L., Ensley, Harry E., Williams, David L. 01 September 2004 (has links)
Glucans are microbial cell wall carbohydrates that are shed into the circulation of patients with infections. Glucans are immunomodulatory and have structures that are influenced by bacterial or fungal species and growth conditions. We developed a method to covalently label carbohydrates with a fluorophore on the reducing terminus, and used the method to study the pharmacokinetics following intravenous administration of three highly purified and characterized glucans (glucan phosphate, laminarin and scleroglucan) that varied according to molecular size, branching frequency and solution conformation. Elimination half-life was longer (3.8±0.8 vs. 2.6±0.2 and 3.1±0.6 h) and volume of distribution lower (350±88 ml/kg vs. 540±146 and 612±154 ml/kg) for glucan phosphate than for laminarin and scleroglucan. Clearance was lower for glucan phosphate (42±6 ml/kg h) than for laminarin (103±17 ml/kg h) and scleroglucan (117±19 ml/kg h). Since plasma levels at steady state are inversely related to clearance, these differences suggest that pharmacokinetics could favor higher blood levels of glucans with certain physicochemical properties.
|
376 |
Modulating Toll-Like Receptor Mediated Signaling by (1→3)-β-D- Glucan Rapidly Induces CardioprotectionLi, Chuanfu, Ha, Tuanzhu, Kelley, Jim, Gao, Xiang, Qiu, Yufeng, Kao, Race L., Browder, William, Williams, David L. 15 February 2004 (has links)
Objective: Immune and inflammatory signaling pathways, initiated by the innate response, are involved in myocardial ischemia/reperfusion (I/R) injury. Toll-like receptor (TLR) mediated MyD88-dependent NFκB pathways play a role in the induction of innate immunity. We have reported that glucan phosphate (GP) improved survival in experimental sepsis, which correlated with decreased tissue NFκB activation. In the present study, we report that GP rapidly induced cardioprotection against I/R injury in vivo. Methods: Sprague-Dawley rats were pretreated with GP (40 mg/kg, i.p) 1 h before 45 min of ligation of the left anterior descending coronary followed by reperfusion for 4 and 24 h. Infarction size was examined by triphenyltetrazolium chloride (TTC) staining. NFκB activation was analyzed by electrophoretic mobility shift assay (EMSA). IκB kinase-β (IKKβ), IL-1 receptor-associated kinase (IRAK) and Phosphoinositide 3-kinase (PI3K) activities were determined by kinase assay with appropriate substrates. Association of TLR4 with MyD88 or with PI3K p85 was assessed by immunoprecipitation with anti-TLR4 followed by immunoblotting with anti-MyD88 or anti-p85. Results: GP treatment reduced infarct size by 47% in rat hearts subjected to reperfusion for 4 h and by 50% following reperfusion for 24 h. The same protective effect was observed when GP was administrated 5 min after initiation of ischemia. The mechanisms of GP induced cardioprotection involve decreased association of TLR4 with MyD88, inhibition of I/R induced IRAK and IKKβ activity and decreased NFκB activity. In addition, GP increased TLR4 phosphotyrosine, resulting in increasing PI3K/Akt activity in the myocardium, which correlated with decreased cardiac myocyte apoptosis following I/R. Conclusion: The results suggest that activation of the TLR mediated MyD88-dependent NFκB signaling pathway may play an important role in myocardial I/R injury, while stimulation of the PI3K/Akt signaling could serve a protective role. The data indicates that GP treatment shifts the TLR mediated activation signal in I/R from a predominantly NFκB pathway to a predominant PI3K/Akt signaling pathway.
|
377 |
Intermittent application of hypergravity by centrifugation attenuates disruption of rat gait induced by 2 weeks of simulated microgravity / 微小重力環境によって惹起されたラットの歩行動作変化は遠心重力による間欠的高重力刺激によって抑制され得るTajino, Junichi 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間健康科学) / 甲第19278号 / 人健博第30号 / 新制||人健||3(附属図書館) / 32280 / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 市橋 則明, 教授 三谷 章, 教授 松田 秀一 / 学位規則第4条第1項該当 / Doctor of Human Health Sciences / Kyoto University / DFAM
|
378 |
Antidiabetic activity of Schkuhria pinnata – Biological screening, PK analysis and mode of actionSewnarain, Prenitha 12 May 2021 (has links)
The increasing reliance on drugs from natural sources has led to the development of several drugs from traditional plants which are present in abundance in Southern Africa. With the rapid increase of incidence of type 2 diabetes in South Africa with potentially devastating effects on healthcare, the need for alternative therapeutics is a priority. In this study, Schkuhria pinnata (Lam.) Kuntze was investigated for its antidiabetic potential. Initial screening of two different solvent extracts of S. pinnata identified an aqueous extract that lowered blood glucose concentrations in a hyperglycaemic streptozotocin-induced diabetic rat. The classical bioassay approach was followed by using different solvents, drying processes and fractionation in order to produce the most active extract and attempt to isolate an active compound(s). An aqueous freeze dried extract was found to be the most active at stimulating glucose uptake activity in C2C12 and Chang cells. Fractionation of this extract in an attempt to identify the active compound yielded a novel crystalline compound 1 by NMR analysis. Screening for bioactivity of the extract and compound 1 using C2C12 muscle and Chang cells revealed that both extract and compound 1 were biologically active, however the activity of the aqueous extract was more significant overall. A butanone/pentane extract prepared for possible commercialization purposes was also shown to be active in vitro. To establish antidiabetic activity, the aqueous freeze dried extract, butanone/pentane extract and the enriched compound 1 fraction were tested in a streptozotocin (STZ) diabetic rat model showing hypoglycaemic effects for the aqueous freeze dried extract. Messenger RNA and protein studies on C2C12 muscle cells revealed that the aqueous freeze dried extract and compound 1 enhanced insulin receptor, GLUT-4, glycogen synthase, pyruvate kinase and pyruvate carboxylase expression, suggestive of an insulin mimetic mode of action, while the butanone/pentane extract enhanced adenosine monophosphate-activated kinase (AMPK) protein expression by a non-insulin dependent mechanism. A pharmacokinetic study (PK) established bioavailability of compound 1 following oral administration of the extracts, but not from the compound 1 enriched fraction. From this study, the traditional use of S. pinnata has been scientifically validated as having antidiabetic properties. In vitro and in vivo bioassays, confirmed that an aqueous freeze dried extract which was prepared as per the traditional method had the most promising antidiabetic iii activity. Compound 1 isolated from an active fraction was proven to be almost as effective as the parent extract in in vitro studies. This compound could therefore be the major active ingredient responsible for the uptake of glucose in cells and the hypoglycaemic activity in vivo. In this study, the antidiabetic activities together with the mechanism of action of S. pinnata extracts and compound 1 were elucidated. The highlight of the study was the identification of a bioactive novel chemical entity (NCE) compound 1 (identified as 2-(2-{[(2E)-4-hydroxy2-(hydroxymethyl)but-2-enoyl]oxy}-4,7-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)prop-2- enoic acid) isolated from an active fraction of S. pinnata that was proven to be almost as effective as the parent extract in in vitro studies. This compound could therefore be the major active ingredient responsible for the uptake of glucose in cells and the hypoglycaemic activity in vivo. The cellular mechanism of action of the S. pinnata extracts and compound 1 demonstrated both insulin mimetic and non-insulin dependent mechanisms (AMPK) in C2C12 muscle cells. Further research in the form of preclinical and clinical trials need to be undertaken to make this extract or biologically active compound available as a herbal remedy or nutraceutical therapeutic for diabetes. To achieve this; safety, efficacy and mode of action studies will have to be established. The synthesis of compound 1 and/or analogues should also be investigated as an antidiabetic drug candidate.
|
379 |
Risk Aversion and its Effects on Foraging Behavior in Sprague-Dawley Rats.Myers, Kenneth A., III 27 November 2018 (has links)
No description available.
|
380 |
An investigation of the organization of the cerebral cortex in the rat :: the use of horseradish peroxidase and fast blue to evaluate the columnar hypothesis.Dodek, Anton Blaine 01 January 1984 (has links) (PDF)
No description available.
|
Page generated in 0.0447 seconds