• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 616
  • 304
  • 218
  • 71
  • 54
  • 43
  • 37
  • 35
  • 27
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 1841
  • 173
  • 163
  • 109
  • 108
  • 100
  • 95
  • 86
  • 84
  • 77
  • 75
  • 74
  • 74
  • 71
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Oxytocin-immunoreactive Neurons in the Paraventricular Nucleus of the Hypothalamus in Hetercephalus glaber: A Quantitative Analysis

Mooney, Skyler 14 December 2011 (has links)
The naked mole-rat (Heterocephalus glaber) demonstrates a strict social and reproductive hierarchy. Oxytocin (OXT) is a peptide hormone that acts both peripherally and centrally in the regulation of a number of sexual and social behaviours. The main area of central production of this peptide is the paraventricular nucleus of the hypothalamus (PVN). The present study characterized differences that exist in OXT neurons in this region. Breeders and subordinates from established colonies were sacrificed and brains were processed for OXT-immunoreactivity. Four further groups of paired animals underwent various social and hormonal manipulations (opposite-sex paired, same sex-paired, opposite-sex/gonadectomised paired, opposite-sex/vasectomized paired) and were also used for analysis. Results showed that subordinate naked mole-rats had significantly more OXT-immunoreactive neurons in the PVN than either breeders or paired animals that had been gonadectomised. However, no differences were found on measures of OXT cell volume. Possible functional significance of these differences is discussed.
472

The development of a small animal model for assessing the 3D implications of loading on bone microarchitecture

Britz, Hayley M 09 September 2011
It is well established that bone is capable of adapting to changes in its environment; however, little is known regarding how environmental stimuli, specifically loading, are associated with the internal 3D microarchitecture of cortical bone. The aim of this thesis was to develop a small animal model that can be used to experimentally test hypotheses regarding bone adaptation. High resolution micro-CT was validated and employed as a novel method for the visualization and quantification of rat cortical bone microarchitecture in 3D. The use of this imaging method allowed for the measurement of primary vascular canal orientation in 3D, which had never been achieved before. Using this measure along with an immobilization model for unloading allowed me to test how loading is associated with the orientation of these vascular canals. Normally ambulating rat bones (from 10 female rats) had a canal structure that was 9.9° more longitudinal than their immobilized counterparts. This finding that loading has an effect on primary canal orientation brought to light the need to induce remodeling and therefore, secondary vascular canals, in the rat to increase its novelty as a model for looking at bone adaptation. Remodeling was induced by increasing the calcium demands of female rats, either through a calcium restricted diet (n=2) or pregnancy and lactation coupled with a calcium restricted diet (n=2). Mean cortical thickness for the calcium restricted rats and the pregnant and lactating rats that were on a calcium restricted diet were 622 µm and 419 µm, respectively. The mean BMU count for calcium restricted rats seemed to be higher than that of the pregnant and lactating rats; however, the calcium restricted rats seemed to have a lower BMU density. Once this full-scale study is executed the rat will provide a more representative model for studying human bone adaptation.
473

An examination of Kindling's effect on spatial cognition

Wolfe, Kenneth Joseph 24 November 2003
Kindling involves the progressive development of epileptiform activity that culminates in generalized seizures in response to repeated electrical stimulation of the brain. Kindling induces widespread changes in synaptic sensitivity and neuronal reactivity. These neuroplastic changes are evident in altered memory and behavior. This research was designed to further our understanding of kindling-induced deficits in spatial cognition. Two questions were examined: 1)does entorhinal cortex kindling disrupt spatial cognition; and 2)can bilateral bifocal kindling, of two brain regions known to participate in spatial cognition, produce larger cognitive deficits than unifocal kindling? This research attempted to confirm the spatial cognitive effects produced by unifocal dorsal hippocampal (dHPC) kindling, as a positive control. In contrast, the spatial cognitive effects produce by unifocal entorhinal cortex (EC) and bifocal kindling (i.e., EC kindling with subsequent contralateral dHPC kindling) are unknown and were examined here. Rats were subjected to unifocal EC kindling, unifocal dHPC kindling, or bifocal kindling. Rats exhibited fully generalized seizures prior to Morris water maze training from days 2 to 31. Visible platform trials were used to examine escape motivation and gross motor coordination, and all groups performed adequately. Consistent with previous research, dHPC kindling disrupted performance during acquisition trials; however, EC and bifocal kindling failed to disrupt acquisition. During retention trials, the bifocal kindling group displayed a disruption in performance; however, dHPC and lateral EC kindling failed to affect retention. The bifocal kindled group failed to display larger deficits than the unifocal kindled groups. These data suggest that the number of kindling stimulations given to a particular site may play a critical role in site-dependent disruption of memory.
474

Ultrahigh Resolution Optical Coherence Tomography for Non-invasive Imaging of Outer Retina Degeneration in Rat Retina

Hariri, Sepideh January 2013 (has links)
This project initiated with the aim for improving the ultrahigh resolution optical coherence tomography (UHR-OCT) system performance by considering the limitations to the axial OCT resolution for in vivo imaging of human and animal retina. To this end, a computational model was developed to simulate the effect of wavelength-dependant water absorption on the detected spectral shape of the broad-bandwidth light source used in UHR-OCT at 1060nm wavelength region, which effectively determines the axial OCT resolution in the retina. For experimental verification of the computational model, a custom built light source with a re-shaped spectrum (Superlum Inc.) was interfaced to the state-of-the-art UHR-OCT system. About 30% improvement of the axial OCT resolution in the rat retina and ~12% improvement of the axial OCT resolution in the human retina was achieved compared to the case of the almost Gaussian shaped spectrum of the standard, commercially available SLD. Although water absorption in the 1060nm spectral region strongly affects the sample beam, selecting a suitable light source with specific spectral shape can compensate for the undesired water absorption effect and thus result in significantly improved axial resolution in in vivo OCT retinal images. To demonstrate the advantages of the state-of-the-art OCT technology for non invasive retinal imaging, an established animal model of outer retina degeneration (sodium iodate (NaIO3)-induced retina degeneration) was employed for longitudinal monitoring of the degeneration and investigation of possible early and dynamic signs of damage undetected by other imaging modalities. The long-term (up to 3 months) and short-term (up to 12 hours) effect of sodium iodate toxicity on the layered structure of retina was monitored longitudinally and in vivo for the first time using OCT. An initial acute swelling of the retina, followed by progressive disruption and degeneration of outer retina was observed as a result of sodium iodate-induced damage. Changes in the thickness and optical reflectivity of individual retinal layers were extracted from the OCT images to quantify the changes occurring at different stages of the disease model. Results from this project present the theoretical and practical limits to the highest axial OCT resolution achievable for retina imaging in the 1060nm spectral range both in small animals and humans, and provided a framework for future development of novel light sources. Furthermore, UHR-OCT imaging was shown to be an effective and valuable modality for in vivo, non invasive investigation of retina degenerative disease.
475

An examination of Kindling's effect on spatial cognition

Wolfe, Kenneth Joseph 24 November 2003 (has links)
Kindling involves the progressive development of epileptiform activity that culminates in generalized seizures in response to repeated electrical stimulation of the brain. Kindling induces widespread changes in synaptic sensitivity and neuronal reactivity. These neuroplastic changes are evident in altered memory and behavior. This research was designed to further our understanding of kindling-induced deficits in spatial cognition. Two questions were examined: 1)does entorhinal cortex kindling disrupt spatial cognition; and 2)can bilateral bifocal kindling, of two brain regions known to participate in spatial cognition, produce larger cognitive deficits than unifocal kindling? This research attempted to confirm the spatial cognitive effects produced by unifocal dorsal hippocampal (dHPC) kindling, as a positive control. In contrast, the spatial cognitive effects produce by unifocal entorhinal cortex (EC) and bifocal kindling (i.e., EC kindling with subsequent contralateral dHPC kindling) are unknown and were examined here. Rats were subjected to unifocal EC kindling, unifocal dHPC kindling, or bifocal kindling. Rats exhibited fully generalized seizures prior to Morris water maze training from days 2 to 31. Visible platform trials were used to examine escape motivation and gross motor coordination, and all groups performed adequately. Consistent with previous research, dHPC kindling disrupted performance during acquisition trials; however, EC and bifocal kindling failed to disrupt acquisition. During retention trials, the bifocal kindling group displayed a disruption in performance; however, dHPC and lateral EC kindling failed to affect retention. The bifocal kindled group failed to display larger deficits than the unifocal kindled groups. These data suggest that the number of kindling stimulations given to a particular site may play a critical role in site-dependent disruption of memory.
476

Investigting the Cytoprotective Mechanisms of VIitamins B6 and B1 against Endogenous Toxin-induced Oxidative Stress

Mehta, Rhea 10 January 2012 (has links)
Recent epidemiological evidence suggests that many chronic health disorders in the developed world are associated with endogenous toxins formed from the Western diet. The Western diet, which encompasses calorie dense foods, processed foods and increased quantities of red meat, can cause intracellular oxidative stress through increased formation of reactive oxygen species(ROS) and reactive carbonyl species (RCS). A number of micronutrients have been investigated for their protective capacity in in vitro and in vivo models of oxidative stress. This thesis investigated the cytotoxic targets of Fenton-mediated ROS and RCS and the subsequent protective mechanisms of vitamins B1 (thiamin) or B6 (pyridoxal, pyridoxamine or pyridoxine) in an isolated rat hepatocyte model. The approach was to use an “accelerated cytotoxicity mechanism screening” technique (ACMS) to develop an in vitro cell system that mimicked in vivo tissue cytotoxicity. Using this technique, we investigated the protective mechanisms of vitamins B1 and/or B6 against the cytotoxic effects of two endogenous toxins associated with the Western diet: 1) RCS, as exemplified by glyoxal, a glucose/fructose autoxidation product and 2) biological ROS induced by exogenous iron. Firstly, we developed an understanding of the sequence of events contributing to glyoxal-induced oxidative stress, with a focus on protein carbonylation. Next, we determined the mechanisms by which carbonyl scavenging drugs (vitamin B6 included) protected against the intracellular targets of glyoxal-induced toxicity. Our results suggested that the agents used were cytoprotective by multiple mechanisms and glyoxal trapping was only observed when the agents were administered at concentrations equal to glyoxal. We also evaluated the protective capacity of vitamins B1 and B6 against iron-catalyzed cytotoxicity and found that hepatocytes could be rescued from protein and DNA damage when vitamins B1 or B6 were added up to one hour after treatment with iron. The vitamins also varied in their primary mechanisms of protection. Our improved understanding of Western diet-derived endogenous toxins enabled us to identify and prioritize the specific inhibitory mechanisms of vitamins B1 or B6. The ability to delay, inhibit or reverse toxicity using multi-functional B1 or B6 vitamins could prove useful as therapy to minimize oxidative stress in diet-induced chronic conditions.
477

Prenatal PolyI:C induced schizophrenia-like cognitive inflexibilities in the male, but not female, rat adult offspring

Zhang, Ying 05 August 2011
Executive functions are important cognitive processes critical for survival. Damage to the prefrontal cortex impairs executive functions, such as working memory, decision making and set-shifting. Interestingly, patients diagnosed with different psychiatric disorders are also impaired in executive functions, especially in the set-shift domain, often measured by the Wisconsin Card Sorting Task (WCST). Set-shifting is an essential cognitive process, in that it allows the individual to suppress non-reinforcing strategies and engage in new rewarding strategies. To date, little is known about the etiology of executive dysfunction in psychiatric disorders. However, some epidemiological and serological experiments have shown strong correlations between prenatal infection and the increased risk to develop psychiatric disorders in the adult offspring. One study found that schizophrenic patients pre-exposed to a prenatal infection perseverated more during the WCST, than non-pre-exposed patients. Despite these findings, there are still numerous limitations (e.g., ethical concerns) when conducting these studies. Thus, animal models are important and can further elucidate the etiology of executive dysfunctions in psychiatric disorders. Prenatal infection animal models have consistently shown that inflammation during gestation in rodents induces behavioural, anatomical and cognitive changes in the adult offspring similar to psychiatric patients. However, no studies have investigated the effects of prenatal infection on set-shifting in the adult offspring. Therefore, the present thesis examined whether prenatal treatment with PolyI:C (a viral mimetic) during middle/late gestation of the rat would induce cognitive inflexibilities (i.e., set-shifting and reversal learning in an operant based task analogous to the WCST) in the adult male and female offspring. The results showed PolyI:C male offspring perseverated during the set-shift but had fewer regressive errors during the reversal learning day. PolyI:C treated female offspring were not impaired during any of the test days; however, females were slower to respond to the lever and required more training when compared the male rats. Taken together, these results give support for prenatal infection in inducing cognitive inflexibility, by potentially altering the PFC in the adult offspring. MS-based thesis: Zhang, Y., Cazakoff, B. N., Thai, C. A., & Howland, J. G. (2011). Prenatal exposure to a viral mimetic alters behavioural flexibility in male, but not female, rats. Neuropharmacology, [epub ahead of print]. doi:10.1016/j.neuropharm.2011.02.022
478

The development of a small animal model for assessing the 3D implications of loading on bone microarchitecture

Britz, Hayley M 09 September 2011 (has links)
It is well established that bone is capable of adapting to changes in its environment; however, little is known regarding how environmental stimuli, specifically loading, are associated with the internal 3D microarchitecture of cortical bone. The aim of this thesis was to develop a small animal model that can be used to experimentally test hypotheses regarding bone adaptation. High resolution micro-CT was validated and employed as a novel method for the visualization and quantification of rat cortical bone microarchitecture in 3D. The use of this imaging method allowed for the measurement of primary vascular canal orientation in 3D, which had never been achieved before. Using this measure along with an immobilization model for unloading allowed me to test how loading is associated with the orientation of these vascular canals. Normally ambulating rat bones (from 10 female rats) had a canal structure that was 9.9° more longitudinal than their immobilized counterparts. This finding that loading has an effect on primary canal orientation brought to light the need to induce remodeling and therefore, secondary vascular canals, in the rat to increase its novelty as a model for looking at bone adaptation. Remodeling was induced by increasing the calcium demands of female rats, either through a calcium restricted diet (n=2) or pregnancy and lactation coupled with a calcium restricted diet (n=2). Mean cortical thickness for the calcium restricted rats and the pregnant and lactating rats that were on a calcium restricted diet were 622 µm and 419 µm, respectively. The mean BMU count for calcium restricted rats seemed to be higher than that of the pregnant and lactating rats; however, the calcium restricted rats seemed to have a lower BMU density. Once this full-scale study is executed the rat will provide a more representative model for studying human bone adaptation.
479

Sigmodon hispidus in relation to vegetation in Belize District, Belize

Brier, John C. 03 June 2011 (has links)
Cotton rats, Sigmodon hispidus, were trapped and studied in Belize District, Belize, Central America from June 14, 1973 to July 13, 1973. Vegetation in the area was surveyed to determine height, extent of matting, and species composition. Comparisons were then made between vegetation and S. hispidus captures. A total of 48 S. hispidus,were captured, primarily in areas of tall and matted grass. S. hispidus appeared to be absent from areas of short grass.Reproduction, body size, sex ratio, parasites, and behavior of S. hispidus are discussed. Other mammals taken during the study included two specimens of Or_yzomys, fulvescens,, a species which had not previously been collected in Belize.Ball State UniversityMuncie, IN 47306
480

Investigting the Cytoprotective Mechanisms of VIitamins B6 and B1 against Endogenous Toxin-induced Oxidative Stress

Mehta, Rhea 10 January 2012 (has links)
Recent epidemiological evidence suggests that many chronic health disorders in the developed world are associated with endogenous toxins formed from the Western diet. The Western diet, which encompasses calorie dense foods, processed foods and increased quantities of red meat, can cause intracellular oxidative stress through increased formation of reactive oxygen species(ROS) and reactive carbonyl species (RCS). A number of micronutrients have been investigated for their protective capacity in in vitro and in vivo models of oxidative stress. This thesis investigated the cytotoxic targets of Fenton-mediated ROS and RCS and the subsequent protective mechanisms of vitamins B1 (thiamin) or B6 (pyridoxal, pyridoxamine or pyridoxine) in an isolated rat hepatocyte model. The approach was to use an “accelerated cytotoxicity mechanism screening” technique (ACMS) to develop an in vitro cell system that mimicked in vivo tissue cytotoxicity. Using this technique, we investigated the protective mechanisms of vitamins B1 and/or B6 against the cytotoxic effects of two endogenous toxins associated with the Western diet: 1) RCS, as exemplified by glyoxal, a glucose/fructose autoxidation product and 2) biological ROS induced by exogenous iron. Firstly, we developed an understanding of the sequence of events contributing to glyoxal-induced oxidative stress, with a focus on protein carbonylation. Next, we determined the mechanisms by which carbonyl scavenging drugs (vitamin B6 included) protected against the intracellular targets of glyoxal-induced toxicity. Our results suggested that the agents used were cytoprotective by multiple mechanisms and glyoxal trapping was only observed when the agents were administered at concentrations equal to glyoxal. We also evaluated the protective capacity of vitamins B1 and B6 against iron-catalyzed cytotoxicity and found that hepatocytes could be rescued from protein and DNA damage when vitamins B1 or B6 were added up to one hour after treatment with iron. The vitamins also varied in their primary mechanisms of protection. Our improved understanding of Western diet-derived endogenous toxins enabled us to identify and prioritize the specific inhibitory mechanisms of vitamins B1 or B6. The ability to delay, inhibit or reverse toxicity using multi-functional B1 or B6 vitamins could prove useful as therapy to minimize oxidative stress in diet-induced chronic conditions.

Page generated in 0.0552 seconds