• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 10
  • 9
  • 4
  • 2
  • 2
  • Tagged with
  • 72
  • 72
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

CSTN LCD Frame Rate Controller For Image Quality Enhancement

Lee, Chien-te 20 July 2010 (has links)
This thesis is mainly focused on FRC (Frame Rate Control) method which can be used for LCD panels, where a new algorithm is proposed to improve the flicker problem. The proposed algorithm can be implemented by simple digital circuits with low power consumption. The proposed design can be applied in both mono- and color- STN panels. It can generate 32768 colors in a panel without any flicker and motion line problems, which can only allow 8 colors originally. The major contribution in this thesis is to add a location number to each pixel of the panel.Notably, the numbers for all the pixels can not be a regular pattern. Otherwise, the flicker problem is resolved at the expense of a serious motion line issue. The consequence is poor display quality. To resolve both the flicker and motion line problem, we propose to employ a PRSG (Pseudo Random Sequence Generator) which generates a non-regular number sequence for all the pixels. Therefore, all the ON pixels can be dispersed on the panel in all frames.
22

A Comparison of Waterflood Management Using Arrival Time Optimization and NPV Optimization

Tao, Qing 2009 December 1900 (has links)
Waterflooding is currently the most commonly used method to improve oil recovery after primary depletion. The reservoir heterogeneity such as permeability distribution could negatively affect the performance of waterflooding. The presence of high permeability streaks could lead to an early water breakthrough at the producers and thus reduce the sweep efficiency in the field. One approach to counteract the impact of heterogeneity and to improve waterflood sweep efficiency is through optimal rate allocation to the injectors and producers. Through optimal rate control, we can manage the propagation of the flood front, delay water breakthrough at the producers and also increase the sweep and hence, the recovery efficiency. The arrival time optimization method uses a streamline-based method to calculate water arrival time sensitivities with respect to production and injection rates. It can also optimize sweep efficiency on multiple realizations to account for geological uncertainty. To extend the scope of this optimization method for more general conditions, this work utilized a finite difference simulator and streamline tracing software to conduct the optimization. Apart from sweep efficiency, another most widely used optimization method is to maximize the net present value (NPV) within a given time period. Previous efforts on optimization of waterflooding used optimal control theorem to allocate injection/production rates for fixed well configurations. The streamline-based approach gives the optimization result in a much more computationally efficient manner. In the present study, we compare the arrival time optimization and NPV optimization results to show their strengths and limitations. The NPV optimization uses a perturbation method to calculate the gradients. The comparison is conducted on a 4- spot synthetic case. Then we introduce the accelerated arrival time optimization which has an acceleration term in the objective function to speed up the oil production in the field. The proposed new approach has the advantage of considering both the sweep efficiency and net present value in the field.
23

Rate-adaptive H.264 for TCP/IP networks

Kota, Praveen 17 September 2007 (has links)
While there has always been a tremendous demand for streaming video over TCP/IP networks, the nature of the application still presents some challenging issues. These applications that transmit multimedia data over best-effort networks like the Internet must cope with the changing network behavior; specifically, the source encoder rate should be controlled based on feedback from a channel estimator that probes the network periodically. First, one such Multimedia Streaming TCP-Friendly Protocol (MSTFP) is considered, which iteratively integrates forward estimation of network status with feedback control to closely track the varying network characteristics. Second, a network-adaptive embedded bit stream is generated using a r-domain rate controller. The conceptual elegance of this r-domain framework stems from the fact that the coding bit rate ) (R is approximately linear in the percentage of zeros among the quantized spatial transform coefficients ) ( r , as opposed to the more traditional, complex and highly nonlinear ) ( Q R characterization. Though the r-model has been successfully implemented on a few other video codecs, its application to the emerging video coding standard H.264 is considered. The extensive experimental results show thatrobust rate control, similar or improved Peak Signal to Noise Ratio (PSNR), and a faster implementation.
24

The Effect of Rate Change on the Relative Timing of Speakers with Multiple Sclerosis

Reister, Brandlynn N. 01 January 2013 (has links)
Relative timing ratios are a useful measure for determining the temporal regularities of speech. The timing intervals that make up these ratios are thought to be important when creating the motor plan for an utterance (Weismer & Fennell, 1985). In fact, these ratios have been shown to be remarkably stable, even when speakers deliberately increase their rate (Tuller & Kelso, 1984; Weismer & Fennell, 1985). The constancy of these ratios also has been demonstrated in speakers with known speech timing disturbances, like the dysarthrias associated with Parkinson's and Huntington's disease (Goberman & McMillan; Ludlow, Connor, & Bassich, 1987; Weismer & Fennell, 1985), apraxia (Weismer & Fennell, 1985), and stuttering (Prosek, Montgomery, & Walden, 1988). However, a slowed rate of speech has been noted to induce variability in relative timing (Clark, 1995). The current investigation was designed to further investigate the impact of a slow rate on relative timing, as well as the impact of a different type of dysarthria on the production of these ratios. Eleven participants with MS and ten healthy controls participated. After screening the participants with MS for cognitive abilities and degree of dysathria, they produced four sentences at three different rates of speech: conversational, fast, and slow. Age-matched controls only provided the rate-controlled sentences. Relative timing ratios were extracted and an analysis of variance was conducted for each sentence to note the effects of speech rate, ratio type, and speaker condition on relative timing. The results revealed that relative timing was not constant in the slow rate for any of the participants. The noted variability in slow speech was attributed to vowel characteristics and sentence length. Finally, people with MS demonstrated larger relative timing ratios than their healthy peers when producing lengthier or motorically complex sentences. Consistent with previous research (Clark, 1995), these results indicated that relative timing ratios were not constant when rate was slowed. Hence, use of a reduced rate may have triggered the critical change required to alter relative timing. This difference may also correspond to a topological shift in the cortical planning of the utterance. These findings provide support for the use of slowed speech in the treatment of dysarthria and other speech timing disorders. It may be that slowed speech allows the speaker to access a motor plan better suited to his impaired muscular system.
25

Matching feedback with operator intent for efficient human-machine interface

Elton, Mark David 09 November 2012 (has links)
Various roles for operators in human-machine systems have been proposed. This thesis shows that all of these views have in common the fact that operators perform best when given feedback that matches their intent. Past studies have shown that position control is superior to rate control except when operating large-workspace and/or dynamically slow manipulators and for exact tracking tasks. Operators of large-workspace and/or dynamically slow manipulators do not receive immediate position feedback. To remedy this lack of position feedback, a ghost arm overlay was displayed to operators of a dynamically slow manipulator, giving feedback that matches their intent. Operators performed several simple one- and two-dimensional tasks (point-to-point motion, tracking, path following) with three different controllers (position control with and without a ghost, rate control) to indicate how task conditions influence operator intent. Giving the operator position feedback via the ghost significantly increased performance with the position controller and made it comparable to performance with the rate control. These results were further validated by testing coordinated position control with and without a ghost arm and coordinated rate control on an excavator simulator. The results show that position control with the ghost arm is comparable, but not superior to rate control for the dynamics of our excavator example. Unlike previous work, this research compared the fuel efficiencies of different HMIs, as well as the time efficiencies. This work not only provides the design law of matching the feedback to the operator intent, but also gives a guideline for when to choose position or rate control based on the speed of the system.
26

An End-to-End Solution for High Definition Video Conferencing over Best-Effort Networks

Javadtalab, Abbas January 2015 (has links)
Video streaming applications over best-effort networks, such as the Internet, have become very popular among Internet users. Watching live sports and news, renting movies, watching clips online, making video calls, and participating in videoconferences are typical video applications that millions of people use daily. One of the most challenging aspects of video communication is the proper transmission of video in various network bandwidth conditions. Currently, various devices with different processing powers and various connection speeds (2G, 3G, Wi-Fi, and LTE) are used to access video over the Internet, which offers best-effort services only. Skype, ooVoo, Yahoo Messenger, and Zoom are some well-known applications employed on a daily basis by people throughout the world; however, best-effort networks are characterized by dynamic and unpredictable changes in the available bandwidth, which adversely affect the quality of the video. For the average consumer, there is no guarantee of receiving an exact amount of bandwidth for sending or receiving video data. Therefore, the video delivery system must use a bandwidth adaptation mechanism to deliver video content properly. Otherwise, bandwidth variations will lead to degradation in video quality or, in the worst case, disrupt the entire service. This is especially problematic for videoconferencing (VC) because of the bulkiness of the video, the stringent bandwidth demands, and the delay constraints. Furthermore, for business grade VC, which uses high definition videoconferencing (HDVC), user expectations regarding video quality are much higher than they are for ordinary VC. To manage network fluctuations and handle the video traffic, two major components in the system should be improved: the video encoder and the congestion control. The video encoder is responsible for compressing raw video captured by a camera and generating a bitstream. In addition to the efficiency of the encoder and compression speed, its output flow is also important. Though the nature of video content may make it impossible to generate a constant bitstream for a long period of time, the encoder must generate a flow around the given bitrate. While the encoder generates the video traffic around the given bitrate, congestion management plays a key role in determining the current available bandwidth. This can be done by analyzing the statistics of the sent/received packets, applying mathematical models, updating parameters, and informing the encoder. The performance of the whole system is related to the in-line collaboration of the encoder and the congestion management, in which the congestion control system detects and calculates the available bandwidth for a specific period of time, preferably per incoming packet, and informs rate control (RC) to adapt its bitrate in a reasonable time frame, so that the network oscillations do not affect the perceived quality on the decoder side and do not impose adverse effects on the video session. To address these problems, this thesis proposes a collaborative management architecture that monitors the network situation and manages the encoded video rate. The goal of this architecture is twofold: First, it aims to monitor the available network bandwidth, to predict network behavior and to pass that information to the encoder. So encoder can encode a suitable video bitrate. Second, by using a smart rate controller, it aims for an optimal adaptation of the encoder output bitrate to the bitrate determined by congestion control. Merging RC operations and network congestion management, to provide a reliable infrastructure for HDVC over the Internet, represents a unique approach. The primary motivation behind this project is that by applying videoconference features, which are explained in the rate controller and congestion management chapter, the HDVC application becomes feasible and reliable for the business grade application even in the best-effort networks such as the Internet.
27

The Effect of Two Rate Change Approaches on Speech Movement Patterns

Lewis, Noelle Marie 12 May 2022 (has links)
The current study examined the effect of different rate change approaches on speech movement patterns, including increasing and decreasing speaking rate volitionally, as well as with delayed auditory feedback (DAF). There were 10 participants, five male and five female, with a mean age of 25 years. All were typical speakers. Participants spoke the sentence “Don’t fight or pout over a toy car” under slow, fast and DAF speaking conditions. A total of 5 sensors were glued to each participant’s tongue, teeth, and lips. NDI Wave electromagnetic articulography recorded the articulatory movements from these sensors as the participants spoke. Metrics for the individual movement strokes, or articulatory gestures, were calculated based on the movement speed of the articulators during the target utterance. Ten tokens of the target utterance were analyzed for stroke count, stroke speed, duration, and hull area. Vertical movements of the tongue, jaw, lips, and lip aperture were used to calculate the spatiotemporal index to assess variability in speech movements across 10 sentence repetitions. Statistical analysis revealed that articulatory patterns changed significantly in slower speech. A speaker’s efforts to naturally decrease speech rate affected articulation patterns more than did the fast and DAF conditions. Findings from this study can be used as a foundation for future studies with dysarthric individuals, which may increase our understanding of mechanisms of change in the remediation of disordered speech.
28

Multi-Cell Admission Control for WCDMA Networks

Azzolin de Carvalho Pires, Gustavo January 2006 (has links)
It has long been recognized that in multi-cell WCDMA networks the admission of a new session into the system can have undesirable impact on the neighboring cells. Although admission control algorithms that take into account such multi-cell impact have been studied in the past, little attention has been paid to multi-cell admission and rate control algorithms when traffic is elastic. In this thesis, we propose a model for multi-cell multi-service WCDMA networks to study the impact of multi-cell admission and rate control algorithms on key performance measures such as the class-wise blocking and outage probabilities, block error rates, and the noise rise violation probabilities. By means of simulation we compare the performance of load based multi-cell algorithms with that of a single cell algorithm. We find that with multi-cell based algorithms the system capacity and performance (in terms of the above mentioned measures) are (in some cases significantly) better in homogeneous load scenarios as well as in the heterogeneous ’hotspot’ and ’hotaround’ scenarios. / Det har länge varit känt att i multi-cellulära WCDMA nät så kan insläppandet av en ny användarei systemet ha en icke önskvärd effekt på intilliggande celler. Fastän insläppskontrollalgoritmer (AC)som tar hänsyn till sådana multi-cellulära effekter har studerats tidigare, så har endast begränsaduppmärksamhet ägnatsåt multi-cellulär insläpps- och bittaktskontrollalgoritmer när trafiken är elastisk.I detta arbete föreslår vi en modell för WCDMA-nät med multipla celler och multipla tjänster ochsom är applicerbar för studier av av hur multi-cellulär insläpps- och bittaktskontroll inverkar påviktiga prestandamått som klassvisa spärr- och utslagningssannolikheter, blockfelssannolikheter, ochsannolikheten för överträdande av tillåten interferensnivå. Med simuleringar jämför vi prestanda förlastbaserade multi-cellalgoritmer med prestanda för singel-cellalgoritmer. Vi har funnit att med multicellalgoritmerså är systemskapacitetet och prestanda (i termer av tidigare nämnda mått) i några fallbetydligt bättre i homogena lastscenarier, samt i heterogena lastscenarier av typerna ’hotspot’ och’hotround’.
29

A Learning Automata Approach for Input-rate Control in Composable Conveyor Systems

Cheerala, Chandana 13 May 2011 (has links)
No description available.
30

Analysis and control of an eight degree-of-freedom manipulator

Nyzen, Robert J. January 1999 (has links)
No description available.

Page generated in 0.0697 seconds