Spelling suggestions: "subject:"rats bvehavior"" "subject:"rats cobehavior""
181 |
Achieving pharmacologically relevant IV alcohol self-administration in the ratWindisch, Kyle Allyson 27 September 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alcohol consumption produces a complex array of effects that can be divided into two types: the explicit pharmacological effects of ethanol (which can be quite separate temporally from time of intake) and the more temporally “relevant” effects (primarily olfactory and taste) that bridge the time from intake to the onset of the pharmacological effects. Dissociating these effects is essential to untangling the neurologic underpinnings of alcohol abuse and dependence. Intravenous self-administration of ethanol allows for controlled and precise dosing, bypasses first order absorption kinetics allowing for a faster onset of pharmacologic effects, and eliminates the confounding “non-pharmacological” effects associated with oral consumption. Intravenous self-administration of ethanol has been reliably demonstrated in both mouse and human experimental models; however, consistent intravenous self-administration of pharmacologically relevant levels of ethanol remains elusive in the rat. Previous work has demonstrated reliable elevated intravenous ethanol self administration using a compound reinforcer of oral sucrose and intravenous ethanol. The present study sought to elucidate the role of each component of this reinforcer complex using a multiple schedule study design. Male P rats had free access to both food and water during all intravenous self-administration sessions and all testing was performed in conjunction with the onset of the dark cycle. Once animals achieved stable operant responding on both levers for an orally delivered 1% sucrose solution (1S) on a FR4 schedule, surgery was conducted to implant an indwelling jugular catheter. Animals were habituated to the attachment of infusion apparatus and received twice daily sessions for four days to condition each lever to its associated schedule. Animals were then trained to respond on a multiple FR4-FR4 schedule composed of alternating 2.5 minute components. During one component only oral 1S was presented, while in the second component a compound reinforcer of oral 1S + IV 20% ethanol was presented (25 mg/kg/injection). Both levers were extended into the chamber during the session, with the active lever/schedule alternating as the session progressed across components. Average ethanol intake was 0.47 ± 0.04 g/kg. A significant increase in sucrose only reinforcers and sucrose lever error responding was found suggesting that sucrose not ethanol is responsible for driving overall responding. The current findings suggest that the existing intravenous ethanol self-administration methodology remains aversive in the rat.
|
182 |
Chronic Ethanol Drinking by Alcohol-preferring Rats Increases the Sensitivity of the Mesolimbic Dopamine System to the Reinforcing and Stimulating Effects of CocaineOster, Scott M. 20 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alcohol and cocaine are commonly co-abused drugs, and those meeting criteria for both cocaine and alcohol use disorders experience more severe behavioral and health consequences than those with a single disorder. Chronic alcohol (ethanol) drinking increased the reinforcing and dopamine (DA) neuronal stimulating effects of ethanol within mesolimbic regions of the central nervous system (CNS) of alcohol-preferring (P) rats. The objectives of the current study were to determine if chronic continuous ethanol drinking produced: (1) alterations in the sensitivity of the nucleus accumbens shell (AcbSh) to the reinforcing effects of cocaine, (2) changes in the magnitude and time course of the local stimulating effects of cocaine on posterior ventral tegmental area (pVTA) DA neurons, and (3) a persistence of alterations in the stimulating effects of cocaine after a period of protracted abstinence.
Female P rats received continuous, free-choice access to water and 15% v/v ethanol for at least 10 wk (continuous ethanol-drinking; CE) or access to water alone (ethanol-naïve; N). A third group of rats received the same period of ethanol access followed by 30 d of protracted abstinence from ethanol (ethanol-abstinent; Ab). CE and Ab rats consumed, on average, 6-7 g/kg/d of ethanol. Animals with a single cannula aimed at the AcbSh responded for injections of cocaine into the AcbSh during four initial operant sessions. Cocaine was not present in the self-infused solution for the subsequent three sessions, and cocaine access was restored during one final session. Animals with dual ipsilateral cannulae aimed at the AcbSh and the pVTA were injected with pulsed microinfusions of cocaine into the pVTA while DA content was collected for analysis through a microdialysis probe inserted into the AcbSh.
During the initial four sessions, neither CE nor N rats self-infused artificial cerebrospinal fluid (aCSF) or 0.1 mM cocaine into the AcbSh. CE, but not N, rats self-administered 0.5 mM cocaine into the AcbSh, whereas both groups self-infused concentrations of 1.0, 2.0, 4.0, or 8.0 mM cocaine. When cocaine access was restored in Session 8, CE rats responded more on the active lever and obtained more infusions of 0.5, 1.0, 2.0, or 4.0 mM cocaine compared to N rats. Microinjection of aCSF into the pVTA did not alter AcbSh DA levels in N, CE, or Ab rats. Microinjections of 0.25 mM cocaine into the pVTA did not significantly alter AcbSh DA levels in N animals, moderately increased DA levels in CE rats, and greatly increased DA levels in Ab rats. Microinjections of 0.5 mM cocaine into the pVTA modestly increased AcbSh DA levels in N animals, robustly increased DA levels in CE rats, and did not significantly alter DA levels in Ab rats. Microinjections of 1.0 or 2.0 mM cocaine into the pVTA modestly increased AcbSh DA levels in N animals but decreased DA levels in CE and Ab rats.
Overall, long-term continuous ethanol drinking by P rats enhanced both the reinforcing effects of cocaine within the AcbSh and the stimulatory and inhibitory effects of cocaine on pVTA DA neurons. Alterations in the stimulatory and inhibitory effects of cocaine on pVTA DA neurons were not only enduring, but also enhanced, following a period of protracted abstinence from ethanol exposure. Translationally, prevention of chronic and excessive alcohol intake in populations with a genetic risk for substance abuse may reduce the likelihood of subsequent cocaine use.
|
Page generated in 0.0508 seconds