• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of early psychostimulant treatment on abuse liability and dopamine receptors

Villafranca, Steven Wayne 01 January 2005 (has links)
Examines whether the reinforcing properties of drugs of abuse were altered in adulthood by methylphenidate, more commonly known as Ritalin. Subjects were 108 rats of Sprague-Dawley descent (Harlan). Methylphenidate, or saline was administered daily to the subjects from the postnatal period (11-20 days old). The rats preference for morphine during early adulthood was measured using conditioned place preference. The number of dopamine D₂ receptors was measured in each rat and the correlation between receptor number and morphine preference was determined. Results indicate that rats pretreated with methylphenidate showed greater preference for morphine than saline pretreated rats and suggests that exposure to methylphenidate during the postnatal period increases the rewarding value of morphine.
2

Peri-adolescent Alcohol Consumption Enhances the Reinforcing and Stimulatory Properties of Ethanol within the Adult Mesolimbic Dopamine System in Alcohol Preferring P Rats

Toalston, Jamie E. 07 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Research in the alcohol preferring (P) rat has indicated that peri-adolescent alcohol (EtOH) consumption enhances the acquisition of oral operant EtOH self-administration, inhibits the extinction of responding for EtOH, augments EtOH-seeking behaviors, and increases relative reward value of EtOH during adulthood. Experiment 1 was conducted to determine if these adult effects of peri-adolescent EtOH intake could be observed using an Intracranial Self-Administration (ICSA) model. It was hypothesized that an increased sensitivity to the rewarding actions of EtOH would be manifested in peri-adolescent-EtOH-exposed subjects compared to naive subjects when the opportunity to self-administer EtOH to the posterior ventral tegmental area (pVTA) is available in adulthood. The pVTA is a primary site for EtOH’s reinforcing and rewarding properties in the mesolimbic dopamine (DA) system. Experiment 2 was a dose-response examination of the effects of EtOH administered to the pVTA on downstream DA efflux in the nucleus accumbens shell (AcbSh) via a joint Microinjection-Microdialysis (MicroMicro) procedure. Male P rats were given 24-h free-choice exposure to 15% volume/volume EtOH from postnatal day (PD) 30 to PD 60, or remained experimentally naive, with ad lib food and water. By the end of the periadolescent exposure period, average consumption was 7.3 g/kg/day of EtOH. After PD 75, periadolescent-EtOH-exposed and naïve rats were either implanted with an injector guide cannula aimed at the right pVTA for ICSA (Experiment 1), or two cannulae, one aimed at the right pVTA (injector) and one at the ipsilateral AcbSh (microdialysis) for MicroMicro (Experiment 2). Following one week of recovery from surgery, ICSA subjects were placed in standard two-lever (active and inactive) operant chambers. Test sessions were 60 min in duration and occurred every other day for a total of 7 sessions. Rats were randomly assigned to one of 5 groups (n=4-9/group) that self-infused (FR1 schedule) either aCSF (vehicle, 0 mg%), 50, 75, 100, or 150 mg% EtOH during 4 sessions, aCSF only for sessions 5 and 6 (extinction), and the initial concentration again for session 7 (reinstatement). MicroMicro subjects received six days of recovery from surgery, probe implantation the day before testing, and then continuous microdialysis for DA with 15 min microdialysis samples collected before, during, and then two hrs after 10-min pulse microinjection of either aCSF (vehicle, 0 mg%), 50, 75, 100, or 150 mg% EtOH. Neither EtOH-exposed nor naive groups of P rats self-infused the aCSF or 50 mg% EtOH concentration. While the naive group did not self-infuse the 75 or 100 mg% EtOH concentrations, the peri-adolescent EtOH-exposed group of P rats did readily discriminate the active lever from the inactive lever at these concentrations. Both groups self-infused the 150 mg% EtOH concentration. Pulse microinjections of EtOH during the MicroMicro procedure revealed that 75 and 100 mg% concentrations of EtOH increased downstream DA in the AcbSh of EtOH-exposed, but not naïve, subjects. 150 mg% EtOH increased downstream DA in both adolescent treatment groups. Overall, the results indicate that consumption of EtOH by P rats during peri-adolescence increases the reinforcing properties of EtOH in the pVTA in adulthood. The results also indicate that there were differential effects of peri-adolescent EtOH exposure on DA efflux in the AcbSh. This provides evidence that peri-adolescent EtOH-exposure produces long-lasting alterations in neural circuitry involved in EtOH-reinforcement, during adulthood.
3

Chronic Ethanol Drinking by Alcohol-preferring Rats Increases the Sensitivity of the Mesolimbic Dopamine System to the Reinforcing and Stimulating Effects of Cocaine

Oster, Scott M. 20 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alcohol and cocaine are commonly co-abused drugs, and those meeting criteria for both cocaine and alcohol use disorders experience more severe behavioral and health consequences than those with a single disorder. Chronic alcohol (ethanol) drinking increased the reinforcing and dopamine (DA) neuronal stimulating effects of ethanol within mesolimbic regions of the central nervous system (CNS) of alcohol-preferring (P) rats. The objectives of the current study were to determine if chronic continuous ethanol drinking produced: (1) alterations in the sensitivity of the nucleus accumbens shell (AcbSh) to the reinforcing effects of cocaine, (2) changes in the magnitude and time course of the local stimulating effects of cocaine on posterior ventral tegmental area (pVTA) DA neurons, and (3) a persistence of alterations in the stimulating effects of cocaine after a period of protracted abstinence. Female P rats received continuous, free-choice access to water and 15% v/v ethanol for at least 10 wk (continuous ethanol-drinking; CE) or access to water alone (ethanol-naïve; N). A third group of rats received the same period of ethanol access followed by 30 d of protracted abstinence from ethanol (ethanol-abstinent; Ab). CE and Ab rats consumed, on average, 6-7 g/kg/d of ethanol. Animals with a single cannula aimed at the AcbSh responded for injections of cocaine into the AcbSh during four initial operant sessions. Cocaine was not present in the self-infused solution for the subsequent three sessions, and cocaine access was restored during one final session. Animals with dual ipsilateral cannulae aimed at the AcbSh and the pVTA were injected with pulsed microinfusions of cocaine into the pVTA while DA content was collected for analysis through a microdialysis probe inserted into the AcbSh. During the initial four sessions, neither CE nor N rats self-infused artificial cerebrospinal fluid (aCSF) or 0.1 mM cocaine into the AcbSh. CE, but not N, rats self-administered 0.5 mM cocaine into the AcbSh, whereas both groups self-infused concentrations of 1.0, 2.0, 4.0, or 8.0 mM cocaine. When cocaine access was restored in Session 8, CE rats responded more on the active lever and obtained more infusions of 0.5, 1.0, 2.0, or 4.0 mM cocaine compared to N rats. Microinjection of aCSF into the pVTA did not alter AcbSh DA levels in N, CE, or Ab rats. Microinjections of 0.25 mM cocaine into the pVTA did not significantly alter AcbSh DA levels in N animals, moderately increased DA levels in CE rats, and greatly increased DA levels in Ab rats. Microinjections of 0.5 mM cocaine into the pVTA modestly increased AcbSh DA levels in N animals, robustly increased DA levels in CE rats, and did not significantly alter DA levels in Ab rats. Microinjections of 1.0 or 2.0 mM cocaine into the pVTA modestly increased AcbSh DA levels in N animals but decreased DA levels in CE and Ab rats. Overall, long-term continuous ethanol drinking by P rats enhanced both the reinforcing effects of cocaine within the AcbSh and the stimulatory and inhibitory effects of cocaine on pVTA DA neurons. Alterations in the stimulatory and inhibitory effects of cocaine on pVTA DA neurons were not only enduring, but also enhanced, following a period of protracted abstinence from ethanol exposure. Translationally, prevention of chronic and excessive alcohol intake in populations with a genetic risk for substance abuse may reduce the likelihood of subsequent cocaine use.

Page generated in 0.0929 seconds