Spelling suggestions: "subject:"rayleigh"" "subject:"kayleigh""
371 |
Data Assimilation and Parameter Recovery for Rayleigh-Bénard ConvectionMurri, Jacob William 03 August 2022 (has links)
Many problems in applied mathematics involve simulating the evolution of a system using differential equations with known initial conditions. But what if one records observations and seeks to determine the causal factors which produced them? This is known as an inverse problem. Some prominent inverse problems include data assimilation and parameter recovery, which use partial observations of a system of evolutionary, dissipative partial differential equations to estimate the state of the system and relevant physical parameters (respectively). Recently a set of procedures called nudging algorithms have shown promise in performing simultaneous data assimilation and parameter recovery for the Lorentz equations and the Kuramoto-Sivashinsky equation. This work applies these algorithms and extensions of them to the case of Rayleigh-B\'enard convection, one of the most ubiquitous and commonly-studied examples of turbulent flow. The performance of various parameter update formulas is analyzed through direct numerical simulation. Under appropriate conditions and given the correct parameter update formulas, convergence is also established, and in one case, an analytical proof is obtained.
|
372 |
A Parallel Spectral Method Approach to Model Plasma InstabilitiesScheiman, Kevin S. 12 June 2018 (has links)
No description available.
|
373 |
Laser Guide Star Design Project for the USAF John Bryan State Park Quad Axis ObservatoryFiglewski, Nathan Michael January 2015 (has links)
No description available.
|
374 |
The Effect of Inclination on the Rayleigh-Benard Convection of Mercury in a Small ChamberMikhail, Salam R. 20 October 2011 (has links)
No description available.
|
375 |
Advancements in Surface Wave Testing: Numerical, Laboratory, and Field Investigations Regarding the Effects of Input Source and Survey Parameters on Rayleigh and Love wavesMahvelati Shams Abadi, Siavash January 2019 (has links)
The Multichannel Analysis of Surface Waves (MASW) method has been widely used to evaluate the subsurface in engineering applications since late 1990’s. In MASW, surface waves are introduced into the subsurface and recorded by sensors along the ground surface. The characteristics of the propagating surface wave are influenced by the subsurface stratification, the manner in which the surface waves are input into the ground, and the survey parameters to acquire data. Rayleigh waves are typically generated by vertical strikes on a metallic plate which serves as a coupler between the active input source (e.g., a sledgehammer) and the ground surface. It has been suggested that plastic-type base plates can improve the low-frequency energy of Rayleigh waves and therefore, can increase the depth of investigation among other potential improvements. However, very little studies exist in the literature that evaluate the role of base plate material, especially plastic materials. In addition to Rayleigh surface waves, seismic surface waves can also be generated with horizontal impacts (i.e., Love waves) using specialized base plates. In this regard, much less is available in the literature regarding Love waves as sources in MASW testing which means that optimum field survey parameters, the effects of near-field, and the role of seismic source have not been thoroughly investigated yet for Love waves. Given the aforementioned gaps in the literature, two aspects of MASW have been investigated. First, the role of base plate material, specifically plastic-type plates, has been studied. Field data collected from six sites along with the data from laboratory experiments and numerical simulations of hammer-plate impact were studied. The results showed that softer base plates improve the energy transfer by as much 20% and lead to minor improvements, typically one-digit numbers in relative changes, in other signal characteristics such as signal bandwidth and signal-to-noise ratio. These results were corroborated with laboratory testing and numerical models of wave propagation with different base plate materials. The second goal was to improve understanding of Love wave propagation, particularly as related to resolution capabilities from survey parameters. Rayleigh and Love waveforms were collected with multiple active seismic sources at three sites and a systematic comparison was made between the two types of waves. Also, seismic wave propagation was simulated using the research community code SPECFEM2D to further investigate their differences. The results revealed critical new information about the depth of investigation, the effects of bedrock location on near-field effects, and the role of the different survey parameters on Rayleigh and Love wave data. The depth of investigation of Love wave MASW was deeper by about 2-9 m than that of Rayleigh MASW as a result of improved minimum frequency. The minimum source offset to avoid near-field effects was comparable for both Rayleigh and Love waves (0.3-0.4 of maximum wavelength). At closer source offset locations, Rayleigh waves were more affected by near-field effects and showed an additional 10% underestimation of planar phase velocities. Overall, the results from both parts of this study provides new practical insights about some of the unexplored aspects of surface wave testing using MASW. / Civil Engineering
|
376 |
Source and propagation effects of Rayleigh waves from Central Asian earthquakes.Patton, Howard John January 1978 (has links)
Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Science. / Microfiche copy available in Archives and Science. / Bibliography: leaves 279-290. / Ph.D.
|
377 |
Numerical Study of Conjugate Natural Convection from Discrete Heat Sources.Gdhaidh, Farouq A.S., Hussain, Khalid, Qi, Hong Sheng 01 October 2014 (has links)
no / The coupling between natural convection and conduction within rectangular enclosure was investigated numerically. Three separate heat sources were flush mounted on a vertical wall and an isoflux condition was applied at the back of heat sources. The governing equations were solved using control volume formulation. A modified Rayleigh number and a substrate/fluid thermal conductivity ratio were used in the range 10^4 −10^7 and 10−10^3 respectively. The investigation was extended to examine high thermal conductivity ratio values. The results illustrated that, when Rayleigh number increased the dimensionless heat flux and local Nusselt number increased and the boundary layers along hot, cold and horizontal walls were reduced significantly. An opposite behaviour for the thermal spreading in the substrate and the dimensionless temperature, were decreased for higher Rayleigh number. Moreover, the thermal spreading in the substrate increased for higher substrate conductivity, which affected the temperature level. However the effect of the substrate is negligible when the thermal conductivity ratio higher than 1,500. / The full text of book chapters are not available for self deposit under the Publisher's copyright restrictions.
|
378 |
Deformations of Piezoceramic-Composite ActuatorsJilani, Adel Benhaj 06 January 2000 (has links)
In the past few years a new class of layered piezoceramic and piezoceramic-composite actuators, known as RAINBOW and GRAPHBOW, respectively, that are capable of achieving 100 times greater out-of-plane displacements than previously available has been developed. Prior to the development of RAINBOW and GRAPHBOW, large stacks of piezoelectric actuators, requiring complicated electronic drive circuits, were necessary to achieve the displacement now possible through the use of a single RAINBOW actuator. The major issues with both RAINBOW and GRAPHBOW are the prediction of their room-temperature shapes after processing, and their deformation response under application of electric field.
In this research, a methodology for predicting the manufactured shapes of rectangular and disk-style RAINBOW and GRAPHBOW is developed. All of the predictive analyses developed are based on finding approximate displacement responses that minimize the total potential energy of the devices through the use of variational methods and the Rayleigh-Ritz technique. These analyses are based on classical layered plate theory and assumed the various layers exhibited linear elastic, temperature-independent behavior. Geometric nonlinearities are important and are included in the strain-displacement relations. Stability of the predicted shapes is determined by examining the second variation of the total potential energy. These models are easily modified to account for the deformations induced by actuation of the piezoceramic.
The results indicate that for a given set of material properties, rectangular RAINBOW can have critical values of sidelength-to-thickness ratio (Lx/H or Ly/H) below which RAINBOW exhibits unique, or single-valued, spherical or domed shapes when cooled from the processing temperature to room temperature. For values of sidelength-to-thickness ratio greater than the critical value, RAINBOW exhibits multiple room-temperature shapes. Two of the shapes are stable and are, in general, near-cylindrical. The third shape is spherical and is unstable. Similarly, disk-style RAINBOW can have critical values of radius-to-thickness ratios (R/H) below which RAINBOW exhibits axisymmetric room-temperature shapes. For values of R/H greater than the critical value, disk-style RAINBOW exhibits two stable near-cylindrical shapes and one unstable axisymmetric shape. Moreover, it is found that for the set of material properties used in this study, the optimal reduced layer thickness would be at 55%, since the maximum change in curvature is achieved under the application of an electric field, while the relationship between the change in curvatures and the electric field is kept very close to being linear. In general, good agreement is found for comparisons between the predicted and manufactured shapes of RAINBOW. A multi-step thermoelastic analysis is developed to model the addition of the fiber-reinforced composite layer to RAINBOW to make GRAPHBOW. Results obtained for rectangular RAINBOW indicate that if the bifurcation temperature in the temperature-curvature relation is lower than the composite cure temperature, then a unique stable GRAPHBOW shape can be obtained. If the RAINBOW bifurcation temperature is above the composite cure temperature, multiple room-temperature GRAPHBOW shapes are obtained and saddle-node bifurcations can be encountered during the cooling to room temperature of [0°/RAINBOW], [RAINBOW/0o], and [0o2/RAINBOW]. Rectangular [RAINBOW/0o/90o] seems to be less likely to encounter saddle-node bifurcations. Furthermore, the unstable spherical RAINBOW configuration is converted to a stable near-cylindrical configuration. For the case considered of disk-style GRAPHBOW, three stable room-temperature shapes are obtained and the unstable axisymmetric RAINBOW configuration is also converted to a stable near-cylindrical configuration. For both rectangular and disk-style GRAPHBOW, the relationship between the major curvature and the electric field is shown to be very close to being linear. This characteristic would aid any dynamic analysis of RAINBOW or GRAPHBOW. / Ph. D.
|
379 |
Numerical Reconstruction and Applications of Acoustic and Electromagnetic Ultra-Wideband Localized Pulses Generated by Dynamic Aperture AntennasAbdel-Rahman, Mohamed A. 30 January 1998 (has links)
A study is undertaken of the numerical reconstruction of acoustic and electromagnetic (EM) localized waves (LWs). The latter are carrier-free ultra-wideband pulses characterized by large focusing depths and extended ranges of localization. Special emphasis is placed on finite energy LWs that can be generated by dynamic aperture antennas with independently addressable elements. The reconstruction techniques are based on Huygens and Rayleigh-Sommerfeld integral I and II representations, both in the time and frequency domains. In contradistinction to the Weyl representation,they lend themselves to the physical realization of space-time aperture sources capable of generating localized wave solutions propagating away from the aperture plane. A detailed comparison of the three reconstruction techniques has been carried out in connection with LW solutions to the scalar wave equation, especially with respect to their handling of acausal components incorporated in the aperture excitation fields. In addition, a study is presented of the characteristic properties of LWs propagating through dispersive media modeled by the Klein-Gordon equation. It is demonstrated that contrary to expectation, the depletion of the spectral components of the LW Klein-Gordon field may be slower than that associated with the free space scalar field. Previous work by Power et al. [73] is extended by studying the acoustic bistatic scattering of a modified power spectrum (MPS) pulse from rigid and compressible spheres. The analysis allows the extraction of the radius of a sphere from the backscattered data. Finally, a special class of electromagnetic (EM) LWs, referred to as azimuthally polarized X waves (APXWs), is derived and their reconstruction is addressed, both in the time and frequency domains. / Ph. D.
|
380 |
Deformation and Force Characteristics of Laminated Piezoelectric ActuatorsAimmanee, Sontipee 05 October 2004 (has links)
This research discusses the mechanical characteristics of laminated piezoelectric actuators that are manufactured at an elevated temperature, to cure the adhesive bonding the layers together, or to cure the layers made of polymeric composite material, and then cooled to a service temperature. Mainly discussed are actuators that are composed of layers of passive materials and a layer of piezoelectric material. THUNDER (THin layer UNimorph ferroelectric DrivER and sensor) and LIPCA (LIghtweight Piezo-composite Curved Actuator) actuators, which consist of layers of metal, adhesive and piezoelectric material, and carbon-epoxy, glass-epoxy and piezoelectric material, respectively, are studied and investigated in detail to understand the thermal effects due to the elevated manufacturing temperature. Owing to the large out-of-plane deformations of the THUNDER actuators as a result of cooling to the service temperature, inclusion of geometric nonlinearities in the kinematic relations is taken into consideration for prediction of the thermally-induced deformations and residual stresses. The deformations and residual stresses are predicted by using a 23-term Rayleigh-Ritz approach and more rigorous, time-consuming, finite-element analyses performed with ABAQUS. The thermally-induced deformations of THUNDER actuators can result in multiple room-temperature manufactured shapes, whereas those of LIPCA actuators (LIPCA-C1 and LIPCA-C2) exhibit single room-temperature manufactured shape. Actuation responses of these actuators caused by a quasi-static electric field applied to the piezoelectric layer are also studied with the Rayleigh-Ritz approach. It is shown that geometrical nonlinearities play an important role in the actuation responses, and these nonlinearities can be controlled by the choice of actuator geometry and the materials in the passive layers. In addition, blocking forces representing load-carrying capability of THUNDER and LIPCA actuators are determined. Support conditions and again geometrical nonlinearities are vital factor in load-resisting performances. Amongst the actuators considered, the actuated deflection and blocking forces are compared. Finally, based on the outcome of this study, new criteria for designing a new type of laminated piezoelectric actuators with improvement of performance characteristics are proposed. / Ph. D.
|
Page generated in 0.0762 seconds