Spelling suggestions: "subject:"rayonnement betatron"" "subject:"rayonnements betatron""
1 |
Electron acceleration and betatron radiation driven by laser wakefield inside dielectric capillary tubes / Accélération d’électrons et rayonnement betatron générés par sillage laser dans des tubes capillairesJu, Jinchuan 27 June 2013 (has links)
Cette thèse porte sur le rayonnement X bêtatron généré par des électrons accélérés par sillage laser plasma dans des tubes capillaires diélectriques. En l’état actuel de la technologie des impulsions laser multi-térawatts, on peut produire des faisceaux ayant une intensité crête élevée, de l’ordre de 1018 W/cm2 dans le plan focal. Une telle impulsion laser se propageant au sein d’un gaz sous-dense conduit à des phénomènes d’interaction laser-plasma non-linéaires, tels que la création d’une bulle de plasma, i.e. une bulle ne contenant aucun électron, suivant le laser. La séparation spatiale des charges en résultant crée des champs électriques très élevés au sein de la bulle, de l'ordre de 100 GV/m, ce qui offre la possibilité d'accélérer des électrons jusqu'au GeV après seulement quelques centimètres d’interaction. En outre, un rayonnement synchrotron ultra-bref, appelé rayonnement bêtatron, est produit lors de l’accélération des électrons puisque ces derniers, soumis au champ électrique radial de la bulle plasma, ont une trajectoire oscillante. Cette thèse présente des résultats expérimentaux sur la génération et l'optimisation de faisceaux d'électrons et de leur rayonnement X, en particulier lorsque le tube capillaire est utilisé pour recueillir l'énergie du halo laser dans le plan focal facilitant l’autofocalisation du laser sur de longues distances. Des faisceaux d’électrons de quelques dizaines de picocoulomb, avec une énergie maximale allant jusqu’à 300 MeV, et dont le spectre est soit piqué à haute énergie soit exponentiellement décroissant, ont été produits dans des tubes capillaires de 10 mm de long avec l’installation laser du Lund Laser Center (LLC, en Suède) par une impulsion laser de 40 fs d’un 16 TW Ti: Saphir. Un rayonnement bêtatron a également été mesuré, il se compose de de photons X dont l’énergie est comprise entre 1 et 10 keV et atteint une luminosité maximale d’environ 1021 photons/s/mm²/mrad²/0.1%BW. Cela équivaut à environ 30 fois l’intensité des faisceaux générés dans le cas des jets de gaz de longueur 2 mm ne disposant pas de guidage optique externe. La compensation des fluctuations de pointé laser permet de minimiser les fluctuations des propriétés du faisceau d’électrons. On obtient des faisceaux d'électrons dont les fluctuations tir-a-tir sont de 1 mrad en pointé, de quelques pourcents en énergie et d’environ 20% RMS en charge. La fluctuation en charge du faisceau, qui peut être considérée comme relativement grande, s’avère être principalement corrélée à la fluctuation en puissance du laser. De plus, il a été montré que le rayonnement bêtatron pouvait être utilisé pour caractériser le processus d'accélération des électrons en caractérisant le nombre moyen d'oscillations bêtatron effectuées par les électrons à l'intérieur de la bulle plasma. La taille typique des sources de rayonnement X (dimension pour laquelle l’intensité gaussienne est égale à 1/e² de la valeur crête) est estimée à ~ 2.5 µm en utilisant un modèle de diffraction de Fresnel induite par une lame de rasoir. Cela correspond à une émittance RMS normalisée pour le faisceau d'électrons d’environ 0,83π mm.mrad. Des simulations tridimensionnelles particle-in-cell (PIC) ont été effectuées et confirment les résultats expérimentaux. Elles indiquent également que les paquets d'électrons générés ainsi que les flashs X directionnels sont ultra-brefs : ~ 10 fs. / This dissertation addresses electron acceleration and the associated betatron X-ray radiation generated by laser wakefield inside dielectric capillary tubes. Focusing the state-of-the-art multi-terawatt laser pulses, high peak intensity, of the order of 1018 W/cm2, can be achieved in the focal plane, where a plasma bubble free of electron is formed just behind the laser. Owing to space charge separation ultrahigh electric fields, of the order of 100 GV/m, occur inside the plasma bubble, providing the possibility to accelerate electrons up to GeV-class over merely a centimetre-scale distance. Furthermore, ultra-short synchrotron-like X-ray radiation, known as betatron radiation, is produced simultaneously when the accelerated electrons are transversely wiggled by the radial electric field inside the plasma bubble. This thesis reports experimental results on the generation and optimization of electron and X-ray beams, particularly when a capillary tube is used to collect the energy of laser halos in the focal plane to facilitate the laser keeping self-focused over a long distance. Employing the 40 fs, 16 TW Ti:sapphire laser at the Lund Laser Centre (LLC) in Sweden, either peaked or widely-spread accelerated electron spectra with a typical beam charge of tens of pC were measured with a maximum energy up to 300 MeV in 10 mm long capillary tubes. Meanwhile, betatron X-ray radiation consisting of 1-10 keV photons was measured with a peak brightness of the order of 1021 photons/s/mm2/mrad2/0.1%BW, which is around 30 times higher than that in the case of a 2 mm gas jet without external optical guiding. When the laser pointing fluctuation is compensated, exceptionally reproducible electron beams are obtained with fluctuations of only 1 mrad RMS in beam pointing, a few percent in electron energy, and around 20% RMS in beam charge. The relatively large instability of beam charge is found to be essentially correlated to laser power fluctuation. Moreover, betatron radiation is able to provide the diagnostics about electron acceleration process and average number of betatron oscillations fulfilled by electrons inside the plasma bubble. The typical X-ray source size (waist of Gaussian distribution at 1/e2 intensity) is quantified to be ~2.5 μm using Fresnel diffraction induced by a razor blade, which furthermore yields the corresponding normalized RMS emittance of electron beam 0.83π mm mrad. Three dimensional particle-in-cell (PIC) modelings are in good agreement with the experimental findings. The PIC simulations also reveal the generated electron bunches (or X-ray bursts) have pulse durations as short as 10 fs.
|
2 |
Accélération d'électrons et rayonnement betatron générés par sillage laser dans des tubes capillairesJu, Jinchuan 27 June 2013 (has links) (PDF)
Cette thèse porte sur le rayonnement X bêtatron généré par des électrons accélérés par sillage laser plasma dans des tubes capillaires diélectriques. En l'état actuel de la technologie des impulsions laser multi-térawatts, on peut produire des faisceaux ayant une intensité crête élevée, de l'ordre de 1018 W/cm2 dans le plan focal. Une telle impulsion laser se propageant au sein d'un gaz sous-dense conduit à des phénomènes d'interaction laser-plasma non-linéaires, tels que la création d'une bulle de plasma, i.e. une bulle ne contenant aucun électron, suivant le laser. La séparation spatiale des charges en résultant crée des champs électriques très élevés au sein de la bulle, de l'ordre de 100 GV/m, ce qui offre la possibilité d'accélérer des électrons jusqu'au GeV après seulement quelques centimètres d'interaction. En outre, un rayonnement synchrotron ultra-bref, appelé rayonnement bêtatron, est produit lors de l'accélération des électrons puisque ces derniers, soumis au champ électrique radial de la bulle plasma, ont une trajectoire oscillante. Cette thèse présente des résultats expérimentaux sur la génération et l'optimisation de faisceaux d'électrons et de leur rayonnement X, en particulier lorsque le tube capillaire est utilisé pour recueillir l'énergie du halo laser dans le plan focal facilitant l'autofocalisation du laser sur de longues distances. Des faisceaux d'électrons de quelques dizaines de picocoulomb, avec une énergie maximale allant jusqu'à 300 MeV, et dont le spectre est soit piqué à haute énergie soit exponentiellement décroissant, ont été produits dans des tubes capillaires de 10 mm de long avec l'installation laser du Lund Laser Center (LLC, en Suède) par une impulsion laser de 40 fs d'un 16 TW Ti: Saphir. Un rayonnement bêtatron a également été mesuré, il se compose de de photons X dont l'énergie est comprise entre 1 et 10 keV et atteint une luminosité maximale d'environ 1021 photons/s/mm²/mrad²/0.1%BW. Cela équivaut à environ 30 fois l'intensité des faisceaux générés dans le cas des jets de gaz de longueur 2 mm ne disposant pas de guidage optique externe. La compensation des fluctuations de pointé laser permet de minimiser les fluctuations des propriétés du faisceau d'électrons. On obtient des faisceaux d'électrons dont les fluctuations tir-a-tir sont de 1 mrad en pointé, de quelques pourcents en énergie et d'environ 20% RMS en charge. La fluctuation en charge du faisceau, qui peut être considérée comme relativement grande, s'avère être principalement corrélée à la fluctuation en puissance du laser. De plus, il a été montré que le rayonnement bêtatron pouvait être utilisé pour caractériser le processus d'accélération des électrons en caractérisant le nombre moyen d'oscillations bêtatron effectuées par les électrons à l'intérieur de la bulle plasma. La taille typique des sources de rayonnement X (dimension pour laquelle l'intensité gaussienne est égale à 1/e² de la valeur crête) est estimée à ~ 2.5 µm en utilisant un modèle de diffraction de Fresnel induite par une lame de rasoir. Cela correspond à une émittance RMS normalisée pour le faisceau d'électrons d'environ 0,83π mm.mrad. Des simulations tridimensionnelles particle-in-cell (PIC) ont été effectuées et confirment les résultats expérimentaux. Elles indiquent également que les paquets d'électrons générés ainsi que les flashs X directionnels sont ultra-brefs : ~ 10 fs.
|
Page generated in 0.0959 seconds