• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The importance of maturation factors in 30S ribosomal subunit assembly

Nord, Stefan January 2010 (has links)
The assembly of the ribosome is a complex process that needs to be highly efficient to support maximum growth. Although the individual subunits of the ribosome can be reconstituted in vitro, such a reaction is inefficient in comparison to the assembly rate in vivo. What differentiates the in vivo from the in vitro assembly is primarily the presence of ribosome assembly proteins. These are proteins that assist in the assembly of the ribosomal subunits but are not part of the mature ribosome. In bacteria, the ribosome assembly proteins include rRNA processing enzymes and rRNA/ribosomal protein (r-protein) modifying enzymes. One set of ribosome assembly proteins, the ribosome maturation factors, have been difficult to classify due to their differences in structure and their apparent lack of similarities with regard to function. As part of this thesis, the previously uncharacterized RimP (ribosome maturation) protein formerly known as P15A or YhbC, was studied. Deletion of the rimP gene affected the growth rate more severely at 44°C than at 37°C and 30°C. Polysome profile analysis revealed a decrease in the amount of translating ribosomes and a corresponding increase in the amount of free 50S and 30S ribosomal subunits. The disproportionate large increase in 50S relative to 30S subunits indicated a 30S assembly defect. RimP was shown to localize to the 30S ribosomal subunit, and an accumulation of 17S rRNA, a precursor to 16S rRNA, supports a role for RimP in 30S subunit maturation. The results from in vitro reconstitution experiments have given valuable insights in the assembly of the 30S subunit. By using a recently developed method, the role of ribosome maturation factors Era, RimM and RimP during in vitro reconstitutions of the 30S subunit was investigated. Era was found to increase the incorporation rate for most of the late binding r-proteins, while RimM and RimP had more specific effects. RimM increased the incorporation rate for r-proteins S19 and S9 and inhibited the incorporation of S13 and S12, whereas RimP increased the incorporation rate primarily for S12 and S5. A comparison of the ribosome maturation factors RimP and RbfA (ribosome binding factor A) revealed structural similarities between the N-terminal domain of RimP and the single domain of RbfA. RbfA is a 15 kDa protein that was found to high copy-suppress a dominant C23U 16S rRNA mutation giving rise to cold-sensitivity in E. coli. A number of chromosomal suppressor mutations that increased the growth rate of an rbfA null mutant were isolated. The five strongest suppressor mutations were localized to the rpsE gene, for r-protein S5 and resulted in amino acid substitutions in three positions: G87A, G87S, G91A, A127V and A127T. These alterations improved translation and the processing of 16S rRNA in the rbfA null mutant. Moreover, they also suppressed the slow growth of the C23U rRNA mutant at 30, 37 and 44°C. / Monteringen av ribosomen är en komplex process som måste vara effektiv för cellen skall kunna växa så fort som möjligt. Det är visat sedan tidigare att ribosomens två subenheter kan monteras ihop in vitro och sedan vara del av en ribosom som gungerar vid proteinsyntes, dock är den typen av rekonstrueringsreaktioner mycket ineffektiva i jämförelse med vad som krävs in vivo. Skillnaden mellan dessa två tillstånd är primärt in vivo-reaktionens närvaro av hjälpproteiner. Hjälpproteinerna assisterar monteringen av ribosomens subenheter men är själva inte en del av den färdiga ribosomen. Inom denna klass av proteiner återfinns proteiner som t.ex. processerar ribosomalt RNA och proteiner som modifierar ribosomalt RNA och ribosomala protein. En klass av hjälpproteiner, mognadsfaktorerna, har varit svåra att klassificera på grund av strukturella olikheter och en brist på funktionella likheter. En del i detta avhandlingsarbete var karaktäriseringen av den tidigare okända mognadsfaktorn RimP, tidigare kallad YhbC eller P15A. En deletion av rimP hade störst påverkan på tillväxthastigheten vid 44°C, men effekter kunde även ses vid 30°C och 37°C. En analys av den ribosomala statusen visade på en minskning av ribosomer aktiva i translation och en motsvarande ökning av fria 50S- och 30S-subenheter. Den oproportionerligt höga ökningen av fria 50S-subenheter, i relation till 30S-subenheter, indikerade att något var fel i monteringen av 30S-subenheten. RimP-proteinet återfanns lokaliserat till fria 30S-subenheter, och en ökning av omoget 16S ribosomalt RNA i en stam som saknar RimP stödjer dess roll i monteringen av 30S-subenheten. Rekonstrueringsexperiment In vitro har gett många värdefulla ledtrådar till hur 30S-subenheten monteras ihop. Genom att använda en nyligen utvecklad metod kunde vi undersöka hur mognadsfaktorerna Era, RimM och RimP påverkade monteringen av ribosomens 30S subenhet in vitro. Era ökade inkorporeringshastigheten av många av de ribosomala proteiner som inkorporeras sent i monteringen av 30S, medans RimM och RimP uppvisade mer specifika effekter. RimM ökade inkorporeringshastigheten för de ribosomala proteinerna S19 och S9, men dessutom inhiberade RimM inkorporeringen av de ribosomala proteinerna S13 och S12. RimP uppvisade den tydligaste effekten av de undersökta proteinerna genom att kraftigt öka 8 inkorporeringshastigheten för det ribosomala proteinet S12, och ökade även inkorporeringshastigheten för det ribosomala proteinet S5. En jämförelse av de två mognadsfaktorerna RbfA och RimP visade på strukturella likheter mellan RimP:s N-terminala domän och den enda domänen hos RbfA. RbfA är ett 15 kDa protein som upptäcktes som en hög-kopiesupressor av en dominant C23U-mutation i 16S ribosomalt RNA som leder till köld-känslighet hos E. coli. Ett antal kromosomala supressormutationer som ökade tillväxthastigheten för en mutant som saknar RbfA isolerades och de fem starkaste av dessa lokaliserades till rpsE genen som kodar för det ribosomala proteinet S5. Mutationerna gav upphov till aminosyra utbyten i tre positioner i S5: G87A, G87S, G91A, A127T och A127V. Förändringarna i S5 förbättrade translationen och processningen av 16S ribosomalt RNA i mutantensom saknar RbfA. Dessutom förbättrade mutationerna tillväxthastigheten hos C23U-mutanten vid 30, 37 och 44°C.
2

Accessory factors for ribosomal assembly

Lövgren, Mattias January 2004 (has links)
The assembly of ribosomal RNA (rRNA) and ribosomal proteins (r-proteins) into ribosomal subunits (30S and 50S) is a complex process. Transcription of rRNA requires antitermination proteins and the primary transcripts are processed by ribonucleases. R-proteins and rRNAs are chemically modified, the r-proteins bind to the rRNAs and the formed RNA-protein complexes are folded into mature ribosomal subunits. All these processes are well-coordinated and overlapping. Non-ribosomal factors are required for proper assembly and maturation of the ribosomal subunits. Two of these factors are the RimM and RbfA proteins, which bind to 30S subunits and are important for efficient processing of 16S rRNA. Lack of either RimM or RbfA results in a reduced amount of polysomes and a lower growth rate. An increased amount of RbfA can partially compensate for deficiencies shown by a RimM lacking mutant. Here, mutations that alter phylogenetically conserved amino acids in RimM have been constructed. One of these (rimM120), which resulted in the replacement of two adjacent tyrosines by alanines, reduced the growth rate three-fold and also decreased the processing efficiency of 16S rRNA. The RimM120 mutant protein showed a much reduced binding to the 30S subunits. Suppression of the rimM120 mutant was achieved by increased amount of the RimM120 protein, by overexpression of rbfA, or by mutations that changed r-protein S19 or 16S rRNA. A variant of r-protein S13, which was previously isolated as a suppressor to a deletion of rimM (∆rimM), suppressed also the rimM120 mutation. The wild-type RimM protein, but not the RimM120 protein, was shown to bind r-protein S19 in the 30S subunits. The changes in S13, S19 and 16S rRNA that compensated for the deficiencies shown by the rimM mutants are all located within a small region of the head of the 30S subunit, suggesting that this region is the likely target for the RimM action. To isolate RbfA variants that show reduced association with the 30S subunits, phylogenetically conserved, surface exposed amino acid residues of RbfA were changed to alanines or, in some instances, to amino acids of the opposite charge to that in the wild-type protein. Alterations of F5, R31, D46 and D100 had the largest effect on growth. Mutations in the metY-nusA-infB operon, isolated as suppressors to the ∆rimM mutant, were shown to increase the amounts of RbfA. In a ∆rimM mutant, all RbfA protein was found associated with the 30S subunits and no free RbfA was detected. The RlmB protein was shown to be the methyltransferase responsible for the formation of Gm2251 in 23S rRNA in Escherichia coli. Unlike a Saccharomyces cerevisiae mutant that lacks the orthologue to RlmB, Pet56p, which methylates mitochondrial rRNA, a ∆rlmB mutant did not show any defects in ribosomal assembly.
3

The Role of the YjeQ GTPase in Bacterial Ribosome Biogenesis: Function of the C-terminal Zinc-finger Domain

Jeganathan, Ajitha 14 May 2015 (has links)
<p>Our understanding of the mechanism of ribosome assembly in bacteria is still in its infancy. Work from our laboratory and others have recently established that some protein assembly factors assist the assembly process at its late stages, mediating the correct folding of the functional core of the 30S and 50S subunits. The GTPase YjeQ is an assembly factor that displaces the upper domain of h44 of the mature 30S subunit upon binding, inducing a distortion in the decoding center. We hypothesized that the displacement of h44 is caused by the zinc-finger domain of YjeQ and mediates the release of RbfA, another assembly factor involved in 30S subunit maturation. To understand how the zinc-finger domain of YjeQ implements the functional interplay with RbfA, we constructed several deletion mutants of the domain. We found that the zinc-finger domain of YjeQ was required to bind the 30S subunit, but not the C-terminal extension (CTE) of the domain. The CTE was necessary for stimulation of GTPase activity upon binding to the 30S subunit and removal of bound RbfA from the 30S subunit. The data presented here suggests that the zinc-finger domain is essential for YjeQ to bind the 30S subunit and to implement the functional interplay with RbfA. Ongoing structural studies of the complex formed by the YjeQ CTE variant and the 30S subunit will provide a three dimensional view of the conformational changes that occur to implement the functional interplay between YjeQ and RbfA at the late stages of 30S subunit assembly.</p> / Master of Science (MSc)

Page generated in 0.0565 seconds