• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamics of variable density ratio reacting jets in unsteady, vitiated crossflow

Wilde, Benjamin R. 12 January 2015 (has links)
Jet in crossflow (JICF) configurations are often used for secondary fuel injection in staged-fuel combustion systems. The high temperature, vitiated crossflow in these systems is inherently unsteady and characterized by random, turbulent fluctuations and coherent, acoustic oscillations. This thesis presents the results of an experimental investigation into the dynamics of non-reacting and reacting jets injected into unsteady, vitiated crossflow. The flow structure and flame stabilization of jets with different momentum flux and density ratios relative to the crossflow are characterized using simultaneous time-resolved stereoscopic particle image velocimetry (SPIV) synchronized with OH planar laser induced fluorescence (PLIF). A modified trajectory scaling law is developed to account for the influence of near-field heat release on the jet trajectory. The second part of this work focuses on the response of a JICF to crossflow forcing. Acoustic drivers are used to excite natural resonances of the facility, which are characterized using the two-microphone method. Spectral analysis of SPIV results shows that, while the jet response to crossflow velocity fluctuations is often negligible, the fluctuating crossflow pressure induces a significant fluctuating jet exit velocity, which leads to periodic jet flapping. The flame response to crossflow forcing is studied using flame edge tracking. An analytical model is developed that predicts the dependence of the jet injector impedance upon important JICF parameters. In the final part of this work, vortex tracking and Mie scattering flow visualization are used to investigate the effect of near-field heat release on the shear layer dynamics. A phenomenological model is developed to explain the effect of combustion on the shear layer stability of density stratified, reacting JICF. The results of this study demonstrate the important effects of near-field heat release and crossflow acoustics on the dynamics of reacting JICF.
2

Combustion Instability Mechanism of a Reacting Jet in Cross Flow at Gas Turbine Operating Conditions

Pent, Jared 01 January 2014 (has links)
Modern gas turbine designs often include lean premixed combustion for its emissions benefits; however, this type of combustion process is susceptible to self-excited combustion instabilities that can lead to damaging heat loads and system vibrations. This study focuses on identifying a mechanism of combustion instability of a reacting jet in cross flow, a flow feature that is widely used in the design of gas turbine combustion systems. Experimental results from a related study are used to validate and complement three numerical tools that are applied in this study – self-excited Large Eddy Simulations, 3D thermoacoustic modeling, and 1D instability modeling. Based on the experimental and numerical results, a mechanism was identified that included a contribution from the jet in cross flow impedance as well as an overall jet flame time lag. The jet impedance is simply a function of the acoustic properties of the geometry while the flame time lag can be separated into jet velocity, equivalence ratio, and strain fluctuations, depending on the operating conditions and setup. For the specific application investigated in this study, it was found that the jet velocity and equivalence ratio fluctuations are important, however, the effect of the strain fluctuations on the heat release are minimal due to the high operating pressure. A mathematical heat release model was derived based on the proposed mechanism and implemented into a 3D thermoacoustic tool as well as a 1D instability tool. A three-point stability trend observed in the experimental data was correctly captured by the 3D thermoacoustic tool using the derived heat release model. Stability maps were generated with the 1D instability tool to demonstrate regions of stable operation that can be achieved as a function of the proposed mechanism parameters. The relative effect of the reacting jet in cross flow on the two dominant unstable modes was correctly captured in the stability maps. While additional mechanisms for a reacting jet in cross flow are possible at differing flow conditions, the mechanism proposed in this study was shown to correctly replicate the stability trends observed in the experimental tests and provides a fundamental understanding that can be applied for combustion system design.
3

Enhanced Flame Stability and Control: The Reacting Jet in Vitiated Cross-Flow and Ozone-Assisted Combustion

Pinchak, Matthew D. 07 June 2018 (has links)
No description available.

Page generated in 0.0539 seconds