• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 12
  • 12
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation de Processus Photo induits du Photosystem II

Herrero Moreno, Christian 14 December 2007 (has links) (PDF)
La photosynthèse est un processus biologique naturel qui convertit l'énergie lumineuse en énergie chimique par l'action de centres réactionnels photosynthétiques. L'énergie convertie est stockée sous forme de produits de haute énergie synthétisés par la branche réductive du processus photosynthétique. Les électrons nécessaires à ces réactions sont fournis par des molécules d'eau lors de leur oxydation par le centre de dégagement de l'oxygène (Oxygen Evolving Complex: OEC) pour le système de photosynthèse II (PSII). La photosynthèse artificielle cherche à reproduire les réactions qui se produisent dans les organismes naturels afin de i) de mieux comprendre les processus chimiques qui se déroulent dans les systèmes naturels, et ii) de parvenir à exploiter l'énergie solaire pour le développement de carburants propres et renouvelables. Chaque étape qui survient dans le processus de photosynthèse naturelle, telle que la capture de lumière, le transfert d'énergie, le transfert d'électron, la séparation de charge, l'activation du catalyseur et la réaction catalytique doit se produire au sein du système artificiel. La photosynthèse artificielle cherche à reproduire les réactions qui se produisent dans les organismes naturels afin de i) de mieux comprendre les processus chimiques qui se déroulent dans les systèmes naturels, et ii) de parvenir à exploiter l'énergie solaire pour le développement de carburants propres et renouvelables. Chaque étape qui survient dans le processus de photosynthèse naturelle, telle que la capture de lumière, le transfert d'énergie, le transfert d'électron, la séparation de charge, l'activation du catalyseur et la réaction catalytique doit se produire au sein du système artificiel. Avec ces concepts en vue, nous avons conçu, synthétisé et caractérisé des molécules qui imitent les réactions réalisées par les antennes et les centres réactionnels présents dans le photosystème II. Ces molécules sont capables de reproduire la séparation de charges induite par la lumière, le transfert d'électrons et l'accumulation d'équivalents oxydo-réducteurs observés pendant la photosynthèse naturelle. Les antennes artificielles se constituent de caroténoïdes et phthalocyanines. Ces molécules présentent des profiles d'absorption large avec des coefficients d'extinction élevés, et sont capables de supporter des transferts d'énergie ultra rapides qui permettent l'état de séparation de charges. En faisant varier la longueur de la chaine conjuguée des caroténoïdes de neuf à onze liaisons doubles, nous avons pu mettre en évidence comment ces molécules peuvent agir aussi bien comme donneurs que comme agents dissipateurs d'énergie, effet caractéristique qui s'apparente au processus de trempe non-photochimique (Non Photochemical Quenching: NPQ) qui se produit dans le cycle de la zéaxanthine. Les mimiques des agents donneurs du photosystème II ont aussi été étudiées. Ces systèmes supramoléculaires contiennent une partie photoactive liée de façon covalente par un intermédiaire à une cavité contenant un ion ou un agrégat d'ions métalliques. La photosensibilisateur utilisé est un complexe du ruthénium [Ru(bipy)3]2+ (bpy = 2,20-bipyridine), homologue du P680, qui absorbe la lumière dans le spectre visible et déclenche le transfert d'électron. Les espèces RuIII résultantes ont un potentiel d'oxydation réversible de 1.3 V vs SCE, comparables à celui de P680 (1.25 V vs NHE) et présentent donc la possibilité d'oxyder à la fois un complexe manganèse ainsi qu'une source d'électron. Concernant les molécules imitant le coté donneur du PSII, nous avons synthétisé des paires ruthénium-phénol, ainsi que des systèmes ruthénium-manganèse bimétalliques. Parmi ces dernières, nous avons étudié celles présentant des cavités de coordination constituées de terpyridines, vu qu'il a déjà été montré que les dimères Mn-di-μ-oxo-Mn de ce type peuvent catalyser l'oxydation de l'eau en oxygène moléculaire. Des salènes et salophènes ont aussi été examinés étant donné que de tels groupes peuvent accomplir l'oxydation à deux électrons de substrats organique. Dans la littérature, ces réactions sont toutes conduites par l'action d'oxydants chimiques externes, tandis que nous avons pour but d'utiliser des espèces oxydantes induites par l'action de la lumière.
2

Functions of REP27 and the low molecular weight proteins PsbX and PsbW in repair and assembly of photosystem II

Garcia Cerdan, Jose Gines January 2009 (has links)
Oxygenic photosynthesis is the major producer of both oxygen and organic compounds on earth and takes place in plants, green algae and cyanobacteria. The thylakoid membranes are the site of the photosynthetic light reactions that involve the concerted action of four major protein complexes known as photosystem II (PSII), cytochrome b6f complex, ATP synthase and photosystem I (PSI). The function of PSII is of particular interest as it performs the light–driven water splitting reaction driving the photosynthetic electron transport. My thesis addressed different aspects of PSII assembly and the functions of its low molecular weight PSII subunits PsbX and PsbW. Photosynthesis in green algae and higher plants is controlled by the nucleus. Many proteins of nuclear origin participate in the regulation of the efficient assembly of the photosynthetic protein complexes. In this investigation we have identified one of these nuclear encoded auxiliary proteins of photosystem II, REP27, which participates in the assembly of the D1 reaction center protein and repair of photodamaged PSII in the green algae Chlamydomonas reinhardtii. Interestingly, PSII is specially enriched in Low Molecular Weight (LMW) subunits that have masses less than 10kDa. These proteins account for more than the half of the PSII subunits. Several questions remains poorly understood regarding the LMW: Which is their evolutionary origin? What function do they perform in the protein complex? Where are they located in the protein structure? In this investigation the functions of two of these LMW subunits (PsbX and PsbW) have been studied using antisense inhibition and T-DNA knockout mutant plants in Arabidopsis thaliana. Deficiency of the PsbX protein leads to impaired accumulation and functionality of PSII. Characterization of PsbW knock-out plants show that PsbW participates in stabilization of the macro-organization of PSII and the peripheral antenna (Light Harvesting Complex, LHCII) in the grana stacks of the chloroplast, also known as PSII-LHCII supercomplexes.
3

Electrostatic interactions and exciton coupling in photosynthetic light-harvesting complexes and reaction centers /

Johnson, Ethan Thoreau. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 184-198).
4

Peptidyl-prolyl cis-trans isomerases in the chloroplast thylakoid lumen /

Edvardsson, Anna, January 2007 (has links) (PDF)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2007. / Härtill 4 uppsatser.
5

The role of protein dielectric relaxation on modulating the electron transfer process in photosynthetic reaction centers

January 2012 (has links)
abstract: The photosynthetic reaction center is a type of pigment-protein complex found widely in photosynthetic bacteria, algae and higher plants. Its function is to convert the energy of sunlight into a chemical form that can be used to support other life processes. The high efficiency and structural simplicity make the bacterial reaction center a paradigm for studying electron transfer in biomolecules. This thesis starts with a comparison of the primary electron transfer process in the reaction centers from the Rhodobacter shperoides bacterium and those from its thermophilic homolog, Chloroflexus aurantiacus. Different temperature dependences in the primary electron transfer were found in these two type of reaction centers. Analyses of the structural differences between these two proteins suggested that the excess surface charged amino acids as well as a larger solvent exposure area in the Chloroflexus aurantiacus reaction center could explain the different temperature depenence. The conclusion from this work is that the electrostatic interaction potentially has a major effect on the electron transfer. Inspired by these results, a single point mutant was designed for Rhodobacter shperoides reaction centers by placing an ionizable amino acid in the protein interior to perturb the dielectrics. The ionizable group in the mutation site largely deprotonated in the ground state judging from the cofactor absorption spectra as a function of pH. By contrast, a fast charge recombination assoicated with protein dielectric relaxation was observed in this mutant, suggesting the possibility that dynamic protonation/deprotonation may be taking place during the electron transfer. The fast protein dielectric relaxation occuring in this mutant complicates the electron transfer pathway and reduces the yield of electron transfer to QA. Considering the importance of the protein dielectric environment, efforts have been made in quantifying variations of the internal field during charge separation. An analysis protocol based on the Stark effect of reaction center cofactor spectra during charge separation has been developed to characterize the charge-separated radical field acting on probe chromophores. The field change, monitored by the dynamic Stark shift, correlates with, but is not identical to, the electron transfer kinetics. The dynamic Stark shift results have lead to a dynamic model for the time-dependent dielectric that is complementary to the static dielectric asymmetry observed in past steady state experiments. Taken together, the work in this thesis emphasizes the importance of protein electrostatics and its dielectric response to electron transfer. / Dissertation/Thesis / Ph.D. Physics 2012
6

Mutations that Affect the Bidirectional Electron Transfer in Photosystem I

January 2014 (has links)
abstract: Photosystem I (PSI) is a multi-subunit, pigment-protein complex that catalyzes light-driven electron transfer (ET) in its bi-branched reaction center (RC). Recently it was suggested that the initial charge separation (CS) event can take place independently within each ec2/ec3 chlorophyll pair. In order to improve our understanding of this phenomenon, we have generated new mutations in the PsaA and PsaB subunits near the electron transfer cofactor 2 (ec2 chlorophyll). PsaA-Asn604 accepts a hydrogen bond from the water molecule that is the axial ligand of ec2B and the case is similar for PsaB-Asn591 and ec2A. The second set of targeted sites was PsaA-Ala684 and PsaB-Ala664, whose methyl groups are present near ec2A and ec2B, respectively. We generated a number of mutants by targeting the selected protein residues. These mutations were expected to alter the energetics of the primary charge separation event. The PsaA-A684N mutants exhibited increased ET on the B-branch as compared to the A-branch in both in vivo and in vitro conditions. The transient electron paramagnetic resonance (EPR) spectroscopy revealed the formation of increased B-side radical pair (RP) at ambient and cryogenic temperatures. The ultrafast transient absorption spectroscopy and fluorescence decay measurement of the PsaA-A684N and PsaB-A664N showed a slight deceleration of energy trapping. Thus making mutations near ec2 on each branch resulted into modulation of the charge separation process. In the second set of mutants, where ec2 cofactor was target by substitution of PsaA-Asn604 or PsaB-Asn591 to other amino acids, a drop in energy trapping was observed. The quantum yield of CS decreases in Asn to Leu and His mutants on the respective branch. The P700 triplet state was not observed at room and cryogenic temperature for these mutants, nor was a rapid decay of P700+ in the nanosecond timescale, indicating that the mutations do not cause a blockage of electron transfer from the ec3 Chl. Time-resolved fluorescence results showed a decrease in the lifetime of the energy trapping. We interpret this decrease in lifetime as a new channel of excitation energy decay, in which the untrapped energy dissipates as heat through a fast internal conversion process. Thus, a variety of spectroscopic measurements of PSI with point mutations near the ec2 cofactor further support that the ec2 cofactor is involved in energy trapping process. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2014
7

Synthesis and Photophysical Characterization of an Artificial Photosynthetic Reaction Center Exhibiting Acid-Responsive Regulation of Charge Separation

January 2015 (has links)
abstract: Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity during periods of elevated photon flux, NPQ induces rapid thermal dissipation of excess excitation energy that would otherwise overwhelm the apparatus’s ability to consume it. Consequently, the frequency of charge separation decreases and the formation of potentially deleterious, high-energy intermediates slows, thereby reducing the threat of photodamage by disallowing their accumulation. Herein is described the synthesis and photophysical analysis of a molecular triad that mimics the effects of NPQ on charge separation within the photosynthetic reaction centers. Steady-state absorption and emission, time-resolved fluorescence, and transient absorption spectroscopies were used to demonstrate reversible quenching of the first singlet excited state affecting the quantum yield of charge separation by approximately one order of magnitude. As in the natural system, the populations of unquenched and quenched states and, therefore, the overall yields of charge separation were found to be dependent upon acid concentration. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2015
8

Molecules for Energy and Charge Transfer for Biomimetic Systems: Synthesis, Characterization and Computational Studies

January 2016 (has links)
abstract: Sunlight, the most abundant source of energy available, is diffuse and intermittent; therefore it needs to be stored in chemicals bonds in order to be used any time. Photosynthesis converts sunlight into useful chemical energy that organisms can use for their functions. Artificial photosynthesis aims to use the essential chemistry of natural photosynthesis to harvest solar energy and convert it into fuels such as hydrogen gas. By splitting water, tandem photoelectrochemical solar cells (PESC) can produce hydrogen gas, which can be stored and used as fuel. Understanding the mechanisms of photosynthesis, such as photoinduced electron transfer, proton-coupled electron transfer (PCET) and energy transfer (singlet-singlet and triplet-triplet) can provide a detailed knowledge of those processes which can later be applied to the design of artificial photosynthetic systems. This dissertation has three main research projects. The first part focuses on design, synthesis and characterization of suitable photosensitizers for tandem cells. Different factors that can influence the performance of the photosensitizers in PESC and the attachment and use of a biomimetic electron relay to a water oxidation catalyst are explored. The second part studies PCET, using Nuclear Magnetic Resonance and computational chemistry to elucidate the structure and stability of tautomers that comprise biomimetic electron relays, focusing on the formation of intramolecular hydrogen bonds. The third part of this dissertation uses computational calculations to understand triplet-triplet energy transfer and the mechanism of quenching of the excited singlet state of phthalocyanines in antenna models by covalently attached carotenoids. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2016
9

Structure and Function of the Homodimeric Reaction Center, and Hydrogen Production, in Heliobacterium modesticaldum

January 2017 (has links)
abstract: The evolution of photosynthesis caused the oxygen-rich atmosphere in which we thrive today. Although the reaction centers involved in oxygenic photosynthesis probably evolved from a protein like the reaction centers in modern anoxygenic photosynthesis, modern anoxygenic reaction centers are poorly understood. One such anaerobic reaction center is found in Heliobacterium modesticaldum. Here, the photosynthetic properties of H. modesticaldum are investigated, especially as they pertain to its unique photochemical reaction center. The first part of this dissertation describes the optimization of the previously established protocol for the H. modesticaldum reaction center isolation. Subsequently, electron transfer is characterized by ultrafast spectroscopy; the primary electron acceptor, a chlorophyll a derivative, is reduced in ~25 ps, and forward electron transfer occurs directly to a 4Fe-4S cluster in ~650 ps without the requirement for a quinone intermediate. A 2.2-angstrom resolution X-ray crystal structure of the homodimeric heliobacterial reaction center is solved, which is the first ever homodimeric reaction center structure to be solved, and is discussed as it pertains to the structure-function relationship in energy and electron transfer. The structure has a transmembrane helix arrangement similar to that of Photosystem I, but differences in antenna and electron transfer cofactor positions explain variations in biophysical comparisons. The structure is then compared with other reaction centers to infer evolutionary hypotheses suggesting that the ancestor to all modern reaction centers could reduce mobile quinones, and that Photosystem I added lower energy cofactors to its electron transfer chain to avoid the formation of singlet oxygen. In the second part of this dissertation, hydrogen production rates of H. modesticaldum are quantified in multiple conditions. Hydrogen production only occurs in cells grown without ammonia, and is further increased by removal of N2. These results are used to propose a scheme that summarizes the hydrogen-production metabolism of H. modesticaldum, in which electrons from pyruvate oxidation are shuttled through an electron transport pathway including the reaction center, ultimately reducing nitrogenase. In conjunction, electron microscopy images of H. modesticaldum are shown, which confirm that extended membrane systems are not exhibited by heliobacteria. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2017
10

Modification of the protein matrix around active-and inactive-branch pheophytins by site-directed mutagenesis; affects on energy and electron transfer processes in photosystem II

Xiong, Ling 20 December 2002 (has links)
No description available.

Page generated in 0.1089 seconds