• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rearrangements of Radical Anions Generated from Cyclopropyl Ketones

Phillips, Janice Paige 11 November 1998 (has links)
Cyclopropyl-containing substrates have been frequently utilized as "probes" for the detection of SET pathways in organic and biorganic systems. These reactions are based on the cyclorpropylcarbinyl → homoallyl rearrangement, which is fast and essentially irreversible. The implicit assumption in such studies is that if a "radical" species is produced, it will undergo ring opening. We have found that there are two important factors to consider in the design of SET probes: 1) ring strain, the thermodynamic driving force for the rearrangement, and 2) resonance energy, which may help or hinder rearrangement, depending on the specific system. Delocalization of spin and charge were found to be important factors pertaining to substituent effects on the rates of radical anion rearrangements. Previous studies from our lab have centered on highly conjugated phenyl cyclopropyl ketones. This work considers a series of compounds varying in their conjugative components from a highly conjugated spiro[2.5]octa-4,7-dien-6-one and derivatives to simple aliphatic ketones. Utilizing cyclic, linear sweep voltammetry, and preparative electrolysis techniques, it was discovered that all substrates yielded ring opened products with rates and selectivities that will prove useful and informative in the design of mechanistic probes based on the cyclorpropylcarbinyl → homoallyl rearrangement. Rates of homogeneous electron transfer from a series of hydrocarbon mediators to substrates were measured using homogeneous catalysis techniques. Standard reduction potentials and reorganization energies of substrates were derived using Marcus theory. Conjugative interactions with the cyclopropyl group are discussed. / Ph. D.
2

The Chemistry of Cyclopropylarene Radical Cations

Wang, Yonghui 02 June 1997 (has links)
Cyclopropane derivatives are frequently utilized as "probes" for radical cation intermediates in a number of important chemical and biochemical oxidation. The implicit assumption in such studies is that if a radical cation is produced, it will undergo ring opening. Through a detailed examination of follow-up chemistry of electrochemically and chemically generated cyclopropylarene radical cations, we have shown that the assumption made in the use of these substrates as SET probes is not necessarily valid. While cyclopropylbenzene radical cation undergoes rapid methanol-induced ring opening (e.g., k = 8.9⁷ s⁻¹M⁻¹), the radical cations generated from 9-cyclopropylanthracenes do not undergo cyclopropane ring opening at all. The radical cations generated from cyclopropylnaphthalenes disproportionate or dimerize before undergoing ring opening. Utilizing cyclic, derivative cyclic, and linear sweep voltammetry, it was discovered that decay of radical cations generated from cyclopropylnaphthalenes in CH₃CN/CH₃OH is second order in radical cation and zero order in methanol. Anodic and Ce(IV) oxidation of all these naphthyl substrates in CH₃CN/CH₃OH led to cyclopropane ring-opened products. However, the rate constant for methanol-induced ring opening (Ar-c-C₃H₅⁺. + CH₃OH -> ArCH(·)CH₂CH₂O(H⁺)CH₃) is extremely small (<20 s⁻¹M⁻¹ for 1-cyclopropylnaphthalenes) despite the fact that ring opening is exothermic by nearly 30 kcal/mol. These results are explained on the basis of a product-like transition state for ring opening wherein the positive charge is localized on the cyclopropyl group, and thus unable to benefit from potential stabilization offered by the aromatic ring. Reactions of radical cations generated from 9-cyclopropylanthracenes in CH₃CN/CH₃CN have also been investigated electrochemically. The major products arising from oxidation of these anthryl substrates are attributable to CH₃OH attack at the aromatic ring rather than CH₃OH-induced cyclopropane ring opening. Ce(IV) oxidation of 9-cyclopropyl-10-methylanthracene and 9,10-dimethylanthracene further showed that radical cations generated from these anthryl substrates undergo neither cyclopropane ring opening nor deprotonation but nucleophilic addition. Side-chain oxidation products from Ce(IV) oxidation of methylated anthracenes arose from further reaction of nuclear oxidation products under acidic and higher temperature conditions. An analogous (more product-like) transition state picture can be applied for cyclopropane ring opening and deprotonation of these anthryl radical cations. Because of much higher intrinsic barrier to either nucleophile-induced cyclopropane ring opening or deprotonation of these anthryl radical cations, nucleophilic addition predominates. Stereoelectronic effects may be another additional factor contributing to this intrinsic barrier because the cyclopropyl group in these anthryl systems adopts a perpendicular conformation which may not meet the stereoelectronic requirements for cyclopropyl ring opening at either the radical cation or dication stage. / Ph. D.

Page generated in 0.4039 seconds