• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 9
  • 7
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 13
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Glass cullet as a new supplementary cementitious material (SCM)

Mirzahosseini, Mohammadreza January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Kyle A. Riding / Finely ground glass has the potential for pozzolanic reactivity and can serve as a supplementary cementitious material (SCM). Glass reaction kinetics depends on both temperature and glass composition. Uniform composition, amorphous nature, and high silica content of glass make ground glass an ideal material for studying the effects of glass type and particle size on reactivity at different temperature. This study focuses on how three narrow size ranges of clear and green glass cullet, 63–75 [mu]m, 25–38 [mu]m, and smaller than 25 [mu]m, as well as combination of glass types and particle sizes affects the microstructure and performance properties of cementitious systems containing glass cullet as a SCM. Isothermal calorimetry, chemical shrinkage, thermogravimetric analysis (TGA), quantitative analysis of X-ray diffraction (XRD), and analysis of scanning electron microscope (SEM) images in backscattered (BS) mode were used to quantify the cement reaction kinetics and microstructure. Additionally, compressive strength and water sorptivity experiments were performed on mortar samples to correlate reactivity of cementitious materials containing glass to the performance of cementitious mixtures. A recently-developed modeling platform called “[mu]ic the model” was used to simulated pozzolanic reactivity of single type and fraction size and combined types and particle sizes of finely ground glass. Results showed that ground glass exhibits pozzolanic properties, especially when particles of clear and green glass below 25 [mu]m and their combination were used at elevated temperatures, reflecting that glass cullet is a temperature-sensitive SCM. Moreover, glass composition was seen to have a large impact on reactivity. In this study, green glass showed higher reactivity than clear glass. Results also revealed that the simultaneous effect of sizes and types of glass cullet (surface area) on the degree of hydration of glass particles can be accounted for through a linear addition, reflecting that the surface area would significantly affect glass cullet reactivity and that the effects of SCM material interaction on reaction kinetics were minimal. However, mechanical properties of cementitious systems containing combined glass types and sizes behaved differently, as they followed the weaker portion of the two particles. This behavior was attributed to the pores sizes, distruibution, and connectiity. Simulations of combined glass types and sizes showed that more work on microstructural models is needed to properly model the reactivity of mixed glass particle systems.
12

Estudo cinético-químico não isotérmico e caracterização da combustão de um carvão CE4500 / not available

Silva Filho, Claudionor Gomes da 14 November 2002 (has links)
O carvão é um combustível mundialmente utilizado para geração termoelétrica de potência em larga escala. Seja qual for o equipamento utilizado para a queima do carvão, a taxa de reação depende de cinética química e de condições de transporte de massa. A cinética química é definida principalmente pela temperatura do processo, atmosfera reativa, composição química e estrutura física das partículas, e tamanho do particulado. O transporte de massa externo às partículas reativas depende da mecânica dos fluídos, e do tamanho e concentração de partículas. O transporte de massa interno às partículas reativas depende da mecânica dos fluidos do escoamento intra-partícula, e da estrutura física e tamanho das partículas. Esse trabalho visa contribuir para a evolução do conhecimento relativo à taxa de combustão intrínseca ou controlada por efeitos intra-partícula, para um carvão brasileiro CE4500 em particular. Desenvolve-se um estudo de combustão de carvão em experimentos termogravimétricos não isotérmicos, em atmosfera de ar. Avaliações do comportamento reativo são apresentadas tendo em vista a massa e tamanho de partícula da amostra, e a superfície BET e estrutura física do carvão e das cinzas. Coeficientes de taxa de reação intrínsecos são estabelecidos para combustão em condições identificadas como primária e secundária, a primeira levando em conta o efeito combinado de devolatização e combustão de carbono fixo, e a segunda levando em conta apenas a queima do carbono fixo. / Coal is a worldwide fuel for large scale thermoelectric power generation. Whatever the device used for burning coal, the ultimate reaction rate depends on chemical kinetics and mass transport conditions. Chemical kinetics is mainly defined by process temperature, reacting atmosphere, chemical composition and physical structure of the particles, and particulate size. Mass transport external to the reacting particules depends on fluid mechanics, and particulate size and concentration. Mass transport internal to the reacting particles depends on intra-particle fluid mechanics, physical structure of the particles and particulate size. This work aims to contribute for enhancing knowledge regarding the intrinsic or intra-particle controlled combustion rate of a particular CE4500 brazilian coal. A study is carried out regarding coal combustion in thermogravimetric non-isothermal experiments, in air atmosphere. Evaluations are performed on reaction behavior regarding the mass and particle size of the sample, and the BET surface area and the physical structure of the coal and the ashes. Intrinsic reaction rate coefficients are established for combustion in conditions identified as primary and secondary, the first accounting for the combined effect of devolatilization and fixed carbon combustion, and the second accounting for fixed carbon combustion alone.
13

Measuring the 7Li(a ; g)11B reaction rate at temperatures relevant for the n-process / Mesure du taux de réaction de 7Li(a ; g)11B aux températures pertinentes pour le n-process

Gilardy, Gwenaelle 18 December 2018 (has links)
L’étude des réaction (a,g) d’intérêt astrophysique est vaste. Ces réactions ont un rôle important dans la phase de fusion d’hélium des étoiles, dans la nucléosynthèse au moment du big bang ainsi que dans une grande partie des scénarios d'explosions stellaires. L’étude des réactions (a,g) impliquant des faisceaux stables peut être réalisée de diverse façon. Je me suis concentrée sur deux d'entre elles. La première est l’étude en cinématique directe en détectant les rayons gamma produits. C'est ce que j'ai fait durant ma thèse pour mesurer la section efficace de 7Li(a,g)11B. Cette réaction a été étudiée au cours des années pour différentes raisons en astrophysique nucléaire. Par exemple, il a été postule que cette réaction pourrait résoudre, au moment de la nucléosynthèse du big bang, le problème du Lithium. Il est clair, aujourd'hui, que ce n'est pas la solution, cependant, elle a un rôle dans la production de boron lors des supernovae de type Ic. Une autre façon d’étudier les réactions (a,g) est d'utiliser la cinématique inverse. L’idée est d'envoyer un faisceau d'ions lourd sur une cible d’hélium. Ce type de cinématique permet de détecter, avec une bonne efficacité, le noyau lourd de recul produit si le faisceau qui n'a pas interagit avec la cible, en est correctement séparé. Les séparateurs de masses, comme St. George, sont construit dans ce but. St. George sera impliquer dans la mesure de sections efficaces de réaction d’importance pour le processus s comme 16O(a,g)20Ne. / The study of (a,g) reactions of astrophysical interest is quite vast. These reactions play an important role in the quiescent Helium burning phase of stars, in big bang nucleosynthesis and in most explosive stellar scenarios. The studies of (a,g) reactions involving stable beams are performed in various ways. I have been concentrating on two of them. The first one is studying these reactions in direct kinematics by detecting the produced gamma rays. This is what I did during my thesis to measure the cross section of 7Li(a,g)11B. It has been studied throughout the years for several purposes in nuclear astrophysics. For example, it was postulated it could solve the big bang nucleosynthesis Lithium problem. Nowadays, it is clear it does not.However, this reaction plays a role in the production of Boron during type Ic Supernovae. Another way to study (a,g) reactions is to use inverse kinematics. The idea is to send a heavy element beam on a Helium target. This kind of kinematics allows for the detection, with good efficiency, of the heavy recoil product if the beam that did not interact in the target is properly separated. Recoil mass separators, like St. George, are built for this purpose. St. George will be involved in measuring cross sections of reaction important for the s-process like 16O(a,g)20Ne.
14

Resistance Switching Charateristics of Titanium-doped silicon oxide thin film with Supercritical Fluid Treatment

Jiang, Jhao-Ping 27 August 2012 (has links)
The resistance random access memory (RRAM) is one of the most popular of the next generation memories with the high operating speed, reliability and the smallest miniature size. RRAM has metal-insulator-metal structure that can greatly reduce the difficulty of entry, but the biggest problem is how to choose the insulator. We selected silicon-based materials to match the intergrated circuits manufacturing process. In this work, sputtering titanium doping in the silicon oxide thin film has a stable characteristic of resistance switching. By material analyzing, we found that supercritical carbon dioxide fluid (SCCO2) treatment can passivate the silicon oxide defect and the self-reduction of titanium oxide, but it also brought OH group into our thin film. So we observed the interface type characteristic of resistance switching. Using constant voltage sampling experiment extract the reaction rate constant (k) and the active energy, prove that the reaction is caused by OH injection. Double-layer structure with titanium-doped and carbon-doped silicon oxide RRAM promote lower operating current by hopping conduction, which is caused by graphite oxide doping. The Space-Charge Limited Current mechanism for high limited current is proven by COMSOL electric field simulation.
15

Effect Of Cooperative Learning Based On Conceptual Change Conditions On Motivation And Understanding Of Reaction Rate

Tastan, Ozgecan 01 March 2009 (has links) (PDF)
The present study mainly focuses on the effect of cooperative learning based on conceptual change conditions to remedy 11th grade students&rsquo / misconceptions related to reaction rate. Also, effect of this method on their motivation was investigated. A total of 110 eleventh grade students participated in the study. Two schools in Ankara and two classes being instructed by the same teacher in each school were included in the sample. One of the classes was randomly assigned as a control group instructed by traditional way and the other as an experimental group instructed by cooperative learning based on conceptual change conditions. This study was conducted on 2008-2009 first semester over six weeks. Reaction Rate Concept Test and Motivated Strategies for Learning Questionnaire were administered as pre-test and post-test to measure students&rsquo / understanding of reaction rate, and their motivation. Moreover, Science Process Skill Test was given before instruction to decide whether there was a significant difference between two groups in their science process skills. ANCOVA was used to evaluate the effect of cooperative learning on students&rsquo / understanding of reaction rate. The results indicated that cooperative learning based on conceptual change conditions removed most of students&rsquo / misconceptions about reaction rate concept and resulted in a significantly better understanding of reaction rate than traditional instruction. Furthermore, data reflecting the effect of conceptual change based cooperative learning on students&rsquo / motivation was analyzed by MANOVA. According to the results, cooperative learning based on conceptual change conditions improved intrinsic goal orientation, and self-efficacy for learning and performance.
16

Application of Fourier transform infrared spectroscopy to determine the reaction rate equation for cross-linking Matrimid 5218 with ethylenediamine in methanol

Yager, Kimberly Marie January 1900 (has links)
Master of Science / Department of Chemical Engineering / John R. Schlup / The cross-linking reaction of the polyimide Matrimid 5218 with ethylenediamine (EDA) in methanol was investigated using Fourier transform infrared (FTIR) spectroscopy. Peaks associated with breaking imide bonds and the formation of amide bonds were identified. Using an internal standard peak of 1014 cm⁻¹ allowed for quantitative analysis to be applied. The peak areas, calculated by slice area, were used for absorbance ratio analysis to follow the cross-linking reaction as a function of time. Lastly, the absorbance values for the decreasing peak 1718 cm⁻¹ were used to calculate the order of reaction for the reaction rate of the mechanism.
17

Estudo cinético-químico não isotérmico e caracterização da combustão de um carvão CE4500 / not available

Claudionor Gomes da Silva Filho 14 November 2002 (has links)
O carvão é um combustível mundialmente utilizado para geração termoelétrica de potência em larga escala. Seja qual for o equipamento utilizado para a queima do carvão, a taxa de reação depende de cinética química e de condições de transporte de massa. A cinética química é definida principalmente pela temperatura do processo, atmosfera reativa, composição química e estrutura física das partículas, e tamanho do particulado. O transporte de massa externo às partículas reativas depende da mecânica dos fluídos, e do tamanho e concentração de partículas. O transporte de massa interno às partículas reativas depende da mecânica dos fluidos do escoamento intra-partícula, e da estrutura física e tamanho das partículas. Esse trabalho visa contribuir para a evolução do conhecimento relativo à taxa de combustão intrínseca ou controlada por efeitos intra-partícula, para um carvão brasileiro CE4500 em particular. Desenvolve-se um estudo de combustão de carvão em experimentos termogravimétricos não isotérmicos, em atmosfera de ar. Avaliações do comportamento reativo são apresentadas tendo em vista a massa e tamanho de partícula da amostra, e a superfície BET e estrutura física do carvão e das cinzas. Coeficientes de taxa de reação intrínsecos são estabelecidos para combustão em condições identificadas como primária e secundária, a primeira levando em conta o efeito combinado de devolatização e combustão de carbono fixo, e a segunda levando em conta apenas a queima do carbono fixo. / Coal is a worldwide fuel for large scale thermoelectric power generation. Whatever the device used for burning coal, the ultimate reaction rate depends on chemical kinetics and mass transport conditions. Chemical kinetics is mainly defined by process temperature, reacting atmosphere, chemical composition and physical structure of the particles, and particulate size. Mass transport external to the reacting particules depends on fluid mechanics, and particulate size and concentration. Mass transport internal to the reacting particles depends on intra-particle fluid mechanics, physical structure of the particles and particulate size. This work aims to contribute for enhancing knowledge regarding the intrinsic or intra-particle controlled combustion rate of a particular CE4500 brazilian coal. A study is carried out regarding coal combustion in thermogravimetric non-isothermal experiments, in air atmosphere. Evaluations are performed on reaction behavior regarding the mass and particle size of the sample, and the BET surface area and the physical structure of the coal and the ashes. Intrinsic reaction rate coefficients are established for combustion in conditions identified as primary and secondary, the first accounting for the combined effect of devolatilization and fixed carbon combustion, and the second accounting for fixed carbon combustion alone.
18

The influence of particle size distribution on bio-coal gasification rate as related to packed beds of particles

Bäckebo, Markus January 2020 (has links)
This thesis is a part of a collaboration between Höganäs AB and Luleå University of Technology, aiming at replacing fossil process coal with bio-coal in their sponge iron process. The difference in gasification reactivity, i.e. reaction rate, between fossil coals and bio-coals is the major challenge in the endeavor to decrease the climate impact of the existing process. The goal of this thesis is to develop a model of reaction rate for bio-coals in relation to particle size distribution. Different particle size distributions were combined and tested to see how that affects the effective reaction rate. Within the scope of this work, gasification reactivities of different materials, including coal, cokes, and bio-coals, were determined. Three bio-coals were selected to study the effect of particle size distribution on reactivity. Kinetic parameters were determined by using thermogravimetric analysis in the temperature range of 770-850 °C while varying CO2 partial pressure between 0.1-0.4 atm. The effect of particle size on the reaction rate was investigated by using particles with diameter between 0.18 and 6.3 mm. The effect of particle size distribution on the reactivity of bio-coal in a packed bed was carried out in a macro thermogravimetric reactor with a constant bed volume of 6.5 cm3 at 980 °C and 40% (vol.) of CO2. The experimental investigation in three different rate-limiting steps was done for one bio-coal sample, i.e. Cortus Bark bio-coal. The activation energy of the bio-coal was 187 kJ mol-1, and the reaction order was 0.365. For the internal diffusion control regime, an increase in particle size resulted in low reaction rate. The effective diffusivity calculated from the Thiele modulus model was 1.41*10-5 m2 s-1. For the external diffusion control regime, an increase in particle size increased the reaction rate up to a certain point where it plateaued at >1 mm. By choosing two discrete particle size distributions, where a smaller average distribution can fit into a larger average distribution the reaction rate was lowered by 30% compared to only using a single narrow particle size distribution. This solution decreased the difference of apparent reaction rate in a packed bed between the bio-coal and anthracite from 6.5 times to 4.5 times. At the moment the model is not generalized for all bio-coals. However, the developed methodology can be routinely applied to assess the different bio-coal samples. One possible error can be that pyrolysis influences the gasification rate for bio-coal that is pyrolyzed below the temperature of the gasification test. There is a clear correlation between particle size distributions, bulk density, and apparent reactivity. By mixing two distributions the reaction rate of Cortus Bark was reduced from 6.5 times the reaction rate of anthracite to 4.5.
19

Detailed chemical mechanism generation of oxygenated biofuel

Roy, Shrabanti 30 April 2021 (has links)
With the increase of global temperature and decrease of fossil fuel sources, biofuels become an excellent alternative in present days. Because of its oxygenated nature, biofuels are found to be more environmentally friendly over fossil fuels. Therefore, in this study, initially two different biofuels: ethanol and 2,5 dimethyl furan (DMF) are considered as an additive to gasoline which shows a significant improvement in its combustion characteristics. Due to this promising result for further studies of these biofuel, details chemical kinetic study of biofuels is considered in this work through generating its mechanism for engine relevant conditions. Detail chemical mechanism PCRL-Mech1 is generated for ethanol which is applicable for wide range of operating conditions. The mechanism is successfully validated with available experimental data of laminar burning speed (LBS) and ignition delay time (IDT). Species concentration at different reactor conditions are also considered for the comparison which shows an excellent agreement. Detail mechanism generation for another newer biofuel anisole is also considered because of its favorable features in combustion properties and potential source of biomass. Anisole is a higher hydrocarbon aromatic component and comparative newer fuel which has limited experimental data. However, with that available experimental data, the developed anisole mechanism shows a good agreement predicting LBS and IDT results. The chemical kinetics of this fuel is also analyzed through reaction path flux and sensitivity analyses. Although, detail mechanisms have higher accuracy, they would be very expensive when using in multiscale computational fluid dynamics (CFD) modeling. Therefore, different mechanism reduction schemes are considered to reduce the mechanism size. Initially direct relation graph (DRG), direct relation graph with error propagation (DRGEP) and sensitivity analysis is implemented to generate a skeleton mechanism for PCRL-Mech1, which successfully reduced its size. In addition, the rate-controlled constraint equilibrium (RCCE) analysis is considered as a reduction scheme. The constraints for RCCE calculation are selected through approximate singular value decomposition of actual degree of disequilibrium (ASVDADD) analysis. A good comparison of temperature profile of RCCE simulation proves the success of ASVDADD method.
20

Gasification and combustion kinetics of typical South African coal chars / Mpho Rambuda

Rambuda, Mpho January 2015 (has links)
An investigation was undertaken to compare the kinetics of combustion and gasification reactions of chars prepared from two South African coals in different reaction atmospheres: air, steam, and carbon dioxide. The two original coals were characterised as vitrinite-rich (Greenside) and inertinite-rich (Inyanda) coals with relatively low ash content (12.5-16.7 wt. %, adb). Chars were prepared from the parent coals under nitrogen atmosphere at 900 °C. Characterisation results show that the volatiles and moisture were almost completely driven off from the parent coals, indicating that the pyrolysis process was efficient. Physicalstructural properties such as porosity and surface area generally increased from the parent coals to the subsequent chars. The heterogeneous char-gas reactions were conducted isothermally in a TGA on ~1 mm size particles. To ensure that the reactions are under chemical reaction kinetic control regime, different temperatures zones were selected for the three different reaction atmospheres. Combustion reactivity experiments were carried out with air in the temperature range of 387 °C to 425 °C; gasification reactivity with pure steam were conducted at higher temperatures (775 °C - 850 °C) and within 825 °C to 900 °C with carbon dioxide. Experimental results show differences in the specific reaction rate with carbon conversion in different reaction atmospheres and char types. Reaction rates in all three reaction atmospheres were strongly dependent on temperature, and follow the Arrhenius type kinetics. All the investigated reactions (combustion with air and gasification with CO2 and steam) were found to be under chemical reaction control regime (Regime I) for both chars. The inertinite-rich coals exhibit longer burn-out time than chars produced from vitrinite-rich coals, as higher specific reaction rate were observed for the vitrinite-rich coals in the three different reaction atmospheres. The determined random pore model (RPM) structural parameters did not show any significant difference during steam gasification of Greenside and Inyanda chars, whereas higher structural parameter values were observed for Greenside chars during air combustion and CO2 gasification (ψ > 2). However a negative ψ value was determined during CO2 gasification and air combustion of Inyanda chars. The RPM predictions was validated with the experimental data and exhibited adequate fitting to the specific rate of reaction versus carbon conversion plots of the char samples at the different reaction conditions chosen for this study. The activation energy determined was minimal for air and maximum for CO2 for both coals; and ranged from 127-175 kJ·mol-1 for combustion, 214-228 kJ·mol-1 and 210-240 kJ·mol-1 for steam and CO2 gasification respectively. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2015

Page generated in 0.0732 seconds