Spelling suggestions: "subject:"deactive power bplanning"" "subject:"deactive power deplanning""
1 |
Meta-heurísticas aplicadas ao modelo AC no planejamento da expansão de sistemas de transmissão /Melchor Gutiérrez, José Nicolás January 2019 (has links)
Orientador: Rubén Augusto Romero Lázaro / Resumo: Os sistemas elétricos do futuro próximo terão um comportamento dinâmico porque grandes fontes renováveis de geração, principalmente geração eólica e solar, serão construídas nos sistemas de potência de vários países do mundo incluindo o Brasil. A incerteza introduzida pelas fontes renováveis de energia é um problema que deve ser solucionado. Para resolver o problema da incerteza é necessário criar uma rede mais flexível. A alocação de armazenadores de energia no sistema de potência será necessária para lidar com as novas incertezas e para manter o funcionamento adequado do sistema. Adicionalmente, o sistema de transmissão deve-se tornar muito mais ativo através do uso de novas tecnologias flexíveis que permitirão ter um controle ótimo do sistema. As novas tecnologias incluem Sistemas Flexíveis de Transmissão em Corrente Alternada (FACTS), sistemas de transmissão de corrente continua (HVDC) e outras tecnologias que permitirão controlar as direções dos fluxos de potência sem alterar a geração ou demanda do sistema. Portanto, nesta tese são estudadas diferentes representações matemáticas para os problemas de fluxo de potência ótimo (FPO), planejamento da transmissão de longo prazo (PERT) e alocação de fontes de reativos (AFR) usando as equações de fluxo de potência de corrente alternada (CA). Adicionalmente, são propostas novas formulações para representar os problemas de fluxo de potência ótimo multiperíodo para sistemas de transmissão ativos que incluem FACTS, sistemas HVDC e ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The future power systems will have a dynamic behaviour due to a significant amount of renewable generation, especially wind and solar generation, will be installed in the power systems of many countries in the world including Brazil.The uncertainty introduced by the renewable energy resources is a problem that has to be solved. The development of a flexible network is necessary to solve the aforementioned problem. The installation of energy storage in the power system will be necessary to manage the new uncertainties and to maintain the adequate system’s operation. Additionally, the transmission system will become more active though new flexible technologies, which allows having an optimal control of the power system. The new technologies include Flexible AC Transmission System (FACTS), High Voltage Direct current (HVDC) transmission systems and other technologies, which allow controlling the power flow direction without changing the power injections of generation or demand. Therefore, in this thesis are studied different mathematical formulations using the AC power flow equations for the optimal power flow (OPF) problem, the transmission expansion planning (TEP) problem and the reactive power planning (RPP) problem. Furthermore, two additional contributions have been made. The first contribution is the development of new mathematical formulations for the multiperiod optimal power flow for active transmission systems that includes FACTS, HVDC and batteries. The second contrib... (Complete abstract click electronic access below) / Doutor
|
2 |
Reactive Power Planning And Operation of Power Systems with Wind Farms for Voltage Stability ImprovementMoger, Tukaram January 2015 (has links) (PDF)
In recent years, the electric power industry around the world is changing continuously due to transformation from regulated market structure to deregulated market structure. The main aim of the transformation of electric supply industry under open access environment is to overcome the some of the limitations faced by the vertically integrated system. It is believed that this transformation will bring in new technologies, integration of other sources of energy such as wind, solar, fuel cells, bio-gas, etc., which are self sustainable and competitive, and better choice for the consumers and so on. As a result, several new issues and challenges have emerged. One of the main issues in power systems is to support reactive power for maintaining the system voltage profile with an acceptable margin of security and reliability required for system operation.
In this context, the thesis addresses some of the problems related to planning and operation of reactive power in power systems. Studies are mainly focused on steady state operation of grid systems, grid connected wind farms and distribution systems as well.
The reactive power support and loss allocation using Y-bus approach is proposed. It computes the reactive power contribution from various reactive sources to meet the reactive load demand and losses. Further, the allocation of reactive power loss to load or sink buses is also computed. Detailed case studies are carried out on 11-bus equivalent system of Indian southern region power grid under different loading conditions and also tested on 259-bus equivalent system of Indian western region power grid. A comparative analysis is also carried out with the proportional sharing principle and one of the circuit based approach in the literature to highlight the features of the proposed approach.
A new reactive power loss index is proposed for identification of weak buses in the system. The new index is computed from the proposed Y-bus approach for the system under intact condition as well as some severe contingencies cases. Fuzzy logic approach is used to select the important and severe line contingencies from the contingency list. The validation of weak load buses identification from the proposed reactive power loss index with that from other well known existing methods in the literature such as Q-V sensitivity based modal analysis and continuation power flow method is carried out to demonstrate the effectiveness of the proposed index. Then, a short-term reactive power procurement/optimal reactive power dispatch analysis is also carried out to determine the optimum size of the reactive compensation devices to be placed at the weak buses for reactive compensation performance analysis in the system.
The proposed approach is illustrated on a sample 5-bus system, and tested on sample 10-bus equivalent system and 72-bus equivalent system of Indian southern region power grid. A comprehensive power flow analysis of PQ type models for wind turbine generating units is presented. The different PQ type models of fixed/semi-variable speed wind turbine generating units are considered for the studies. In addition, the variable speed wind turbine generating units are considered in fixed power factor mode of operation. Based on these models, a comparative analysis is carried out to assess the impact of wind generation on distribution and transmission systems. 27-bus equivalent distribution test system, 93-bus equivalent test system and SR 297-bus equivalent grid connected wind system are considered for the studies.
Lastly, reactive power coordination for voltage stability improvement in grid connected wind farms with different types of wind turbine generating units based on fuzzy logic approach is presented. In the proposed approach, the load bus voltage deviation is minimized by changing the reactive power controllers according to their sensitivity using fuzzy set theory. The fixed/semi-variable speed wind turbine generating units are also considered in the studies because of its impact on overall system voltage performance even though they do not support the system for voltage unlike variable speed wind generators. 297-bus equivalent and 417-bus equivalent grid connected wind systems are considered to present the simulation results. A comparative analysis is also carried out with the conventional linear programming based reactive power optimization technique to highlight the features of the proposed approach.
|
Page generated in 0.0949 seconds