• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanochemical synthesis, structural and hydrogenation properties of the Li-Mg-N-H system / Mécanosynthèse, structure et propriétés d'hydrogénation du système Li-Mg-N-H

Li, Zhinian 21 December 2015 (has links)
Cette thèse est consacrée à l'étude des métaux-N-H des matériaux pour le stockage d'hydrogène de solide. Le but est de caractériser la synthèse mechanochemical, structurelle et les propriétés d'hydrogénation de Li-N-H, Li-Mg-N-H et des systèmes Li-Mg-B-N-H. Premièrement, l'assimilation hydrogène pendant mechanochemistry de Li3N sous 9 MPA de H2 a été analysée au moyen de l'absorption solide-à-gaz in situ et la Diffraction de Radiographie d'ex-situ (XRD) des mesures. Deux étapes de H-sorption menant à une assimilation hydrogène globale de 9.8wt le % ont été obtenus. La première étape de réaction comprend la transformation de polymorphe-li3n (S.G.P6/mmm) dans li3n (S.G.P63/mmc) métastable la phase et la réaction du dernier avec l'hydrogène pour former lithium imide :-li3n + H2 Li2NH + LiH. La deuxième étape absorbant est lithium imide des convertis à lithium amide / This thesis is dedicated to the study of novel metal-N-H materials for solid state hydrogen storage. The aim is to characterize the mechanochemical synthesis, structural and hydrogenation properties of Li-N-H, Li-Mg-N-H and Li-Mg-B-N-H systems. Firstly, hydrogen uptake during mechanochemistry of Li3N under 9 MPa of H2 has been analyzed by means of in-situ solid-gas absorption and ex-situ X-Ray Diffraction (XRD) measurements. Two H-sorption steps leading to an overall hydrogen uptake of 9.8wt% was obtained. The first reaction step comprises the transformation of polymorph -Li3N (S.G.P6/mmm) into -Li3N (S.G.P63/mmc) metastable phase and the reaction of the latter with hydrogen to form lithium imide: -Li3N + H2 Li2NH + LiH. The second absorption step is lithium imide converts to lithium amide following the reaction scheme Li2NH + H2 LiNH2 + LiH. The assessment of reaction paths in this system as well as of the appraisal of the underlying reaction mechanisms was under taken. Secondly, reactive ball milling (RBM) under H2 of Li3N and Mg powder with a molar ratio of 2:1 was taken on to destabilize Li-N-H system and accelerate its sorption kinetics. The onset dehydrogenation temperature of the as-milled 2Li3N+Mg mixture was detected at 125°C, which is about 75°C lower than that of the Li-N-H system. The structural and phases evolution of the Li-Mg-N-H system during both the synthesis and subsequent hydrogenation/dehydrogenation cycling were characterized by combined analysis of in-situ XRD and neutron powder diffraction (NPD) measurements. It was found step wised for the both processes depending on mainly the temperature and hydrogen pressure to the system. Finally, the effect of the addition of Co-based compounds, lithium borohydides and the combination of them to Li-Mg-N-H system were systematically investigated by XRD, scanning electron microscopy (SEM), fourier transform infra-red (FTIR), differential scanning calorimetry (DSC) and hydrogen storage properties measurements with the aim to overcome the kinetic barriers and further decrease the dehydrogenation temperature. The Li-Mg-B-N-H/3wt% ZrCoH3 composite synthesized by RBM has the best hydrogen storage properties. It is shown that the activation energy was decreased and the N-H bonds were weakened, which could be the main reasons for improving the hydrogen storage properties of Li-Mg-N-H system

Page generated in 0.1135 seconds