Spelling suggestions: "subject:"broyage mécanique réactifs"" "subject:"broyage mécanique réaction""
1 |
Mechanochemical synthesis, structural and hydrogenation properties of the Li-Mg-N-H system / Mécanosynthèse, structure et propriétés d'hydrogénation du système Li-Mg-N-HLi, Zhinian 21 December 2015 (has links)
Cette thèse est consacrée à l'étude des métaux-N-H des matériaux pour le stockage d'hydrogène de solide. Le but est de caractériser la synthèse mechanochemical, structurelle et les propriétés d'hydrogénation de Li-N-H, Li-Mg-N-H et des systèmes Li-Mg-B-N-H. Premièrement, l'assimilation hydrogène pendant mechanochemistry de Li3N sous 9 MPA de H2 a été analysée au moyen de l'absorption solide-à-gaz in situ et la Diffraction de Radiographie d'ex-situ (XRD) des mesures. Deux étapes de H-sorption menant à une assimilation hydrogène globale de 9.8wt le % ont été obtenus. La première étape de réaction comprend la transformation de polymorphe-li3n (S.G.P6/mmm) dans li3n (S.G.P63/mmc) métastable la phase et la réaction du dernier avec l'hydrogène pour former lithium imide :-li3n + H2 Li2NH + LiH. La deuxième étape absorbant est lithium imide des convertis à lithium amide / This thesis is dedicated to the study of novel metal-N-H materials for solid state hydrogen storage. The aim is to characterize the mechanochemical synthesis, structural and hydrogenation properties of Li-N-H, Li-Mg-N-H and Li-Mg-B-N-H systems. Firstly, hydrogen uptake during mechanochemistry of Li3N under 9 MPa of H2 has been analyzed by means of in-situ solid-gas absorption and ex-situ X-Ray Diffraction (XRD) measurements. Two H-sorption steps leading to an overall hydrogen uptake of 9.8wt% was obtained. The first reaction step comprises the transformation of polymorph -Li3N (S.G.P6/mmm) into -Li3N (S.G.P63/mmc) metastable phase and the reaction of the latter with hydrogen to form lithium imide: -Li3N + H2 Li2NH + LiH. The second absorption step is lithium imide converts to lithium amide following the reaction scheme Li2NH + H2 LiNH2 + LiH. The assessment of reaction paths in this system as well as of the appraisal of the underlying reaction mechanisms was under taken. Secondly, reactive ball milling (RBM) under H2 of Li3N and Mg powder with a molar ratio of 2:1 was taken on to destabilize Li-N-H system and accelerate its sorption kinetics. The onset dehydrogenation temperature of the as-milled 2Li3N+Mg mixture was detected at 125°C, which is about 75°C lower than that of the Li-N-H system. The structural and phases evolution of the Li-Mg-N-H system during both the synthesis and subsequent hydrogenation/dehydrogenation cycling were characterized by combined analysis of in-situ XRD and neutron powder diffraction (NPD) measurements. It was found step wised for the both processes depending on mainly the temperature and hydrogen pressure to the system. Finally, the effect of the addition of Co-based compounds, lithium borohydides and the combination of them to Li-Mg-N-H system were systematically investigated by XRD, scanning electron microscopy (SEM), fourier transform infra-red (FTIR), differential scanning calorimetry (DSC) and hydrogen storage properties measurements with the aim to overcome the kinetic barriers and further decrease the dehydrogenation temperature. The Li-Mg-B-N-H/3wt% ZrCoH3 composite synthesized by RBM has the best hydrogen storage properties. It is shown that the activation energy was decreased and the N-H bonds were weakened, which could be the main reasons for improving the hydrogen storage properties of Li-Mg-N-H system
|
2 |
Stockage de l’hydrogène par des mélanges mécanochimiques à base de magnésium : Étude de composés intermétalliques ternaires à base de bore (structure et essais d’hydrogénation) / Storing hydrogen from mixtures containing magnesium Mechanochemical : Study ternary intermetallic compounds based on boron (structure and hydrogenation tests)Pall, Liv 25 September 2012 (has links)
Le but de cette étude était la compréhension des mécanismes de stockage de l'hydrogène etl'amélioration de la capacité de stockage dans (1) le magnésium et (2) les composés intermétalliques àbase de bore.(1) Les poudres de magnésium avec ajout de 10% massique d’oxyde de magnésium ont étébroyées à l'aide d'un broyeur planétaire à billes, par broyage mécanique réactif sous atmosphèred'hydrogène (10 bars) pendant 10 heures, en variant deux paramètres: la vitesse de broyage et le nombrede billes utilisées (i.e., le rapport massique poudre : billes). Il semblerait que les poudres broyées à250rpm en utilisant 17 billes (rapport de 1: 13) présentent des performances supérieures en termes de:taille des particules, contenu en MgH2 après broyage, surface spécifique et cinétiquesd'absorption/désorption de l'hydrogène. Nous avons vérifié que l'oxyde de magnésium a un effet deretardement significatif de la croissance des grains. Le calcul des énergies d'activation et l'étude descinétiques ont montré que l'oxyde de magnésium ne joue pas de rôle catalyseur pour la sorptiond'hydrogène.(2) Les composes synthétisés dans les systèmes ternaires La-MT-B, Gd-MT-B et Y-MT-B (MT=Ni,Fe, Co) ont été étudiés en termes de leur structure cristalline, composition chimique et propriétés desorption de l'hydrogène. La majorité des composés obtenus dans ces systèmes cristallisent avec unestructure type CeCo4B, avec des paramètres de maille proches de ceux du composé GdNi4B. Leremplacement total du Ni par des atomes de Fe et/ou Co est possible, indiquant l’existence d’une solutionsolide totale entre TRNi4B et TRFe4B ou TRCo4B. En outre, le bore est supposé occuper partiellementdeux sites cristallographiques différents, mais l’un seul d'entre eux est principalement occupé par le bore.La nouvelle phase GdNi2,5B2,5 a également été observée dans cette étude pour la première fois. Unephase pseudo-binaire GdB3 a été également reportée. Enfin, il est montré que seul le composé LaNi4Babsorbe l'hydrogène, quoique de manière irréversible. / The aim of this study was the comprehension of hydrogen storage mechanisms and theimprovement of storage capacity in (1) magnesium and (2) boron based intermetallic compounds.(1) Magnesium powders with 10 wt.% magnesium oxide were milled using a planetary ball mill, byreactive mechanical grinding under hydrogen atmosphere (10 bar) for 10 hours, varying two parameters:the milling speed and the number of balls used (i.e. the powder-to-ball weight ratio). It appears that thepowders milled at 250 rpm using 17 balls (ratio 1: 13) have superior performances in terms of: particlesize, MgH2 content after milling, specific surface area and hydrogen absorption/desorption kinetics. Wehave verified that the magnesium oxide has a significant effect on grain growth, delaying it. Calculation ofthe activation energies and study of the kinetics showed that magnesium oxide does not play a catalyticrole for hydrogen sorption.(2) The compounds synthesized in the ternary systems La-TM-B, Gd-TM-B and Y-TM-B (TM=Ni,Fe, Co) were studied in terms of their crystal structure, chemical composition and hydrogen sorptionproperties. Most of the compounds obtained in these systems crystallize with a CeCo4B-type structure,with lattice parameters close to those of the compound GdNi4B. A total replacement of Ni by Fe and/or Cois sometimes possible, meaning that a total solid solution exists between RENi4B and REFe4B or RECo4B.Also, the boron is assumed to partially occupy two different crystallographic sites, although only one ofthese is mainly occupied by boron. The new phase GdNi2.5B2.5 was also observed in this study for the firsttime. In addition, a pseudo-binary phase GdB3 is observed. Finally, it is reported that only the compoundLaNi4B absorbs hydrogen, albeit irreversibly.
|
3 |
Stockage de l'hydrogène par des mélanges mécanochimiques à base de magnésium : Étude de composés intermétalliques ternaires à base de bore (structure et essais d'hydrogénation)Pall, Liv 25 September 2012 (has links) (PDF)
Le but de cette étude était la compréhension des mécanismes de stockage de l'hydrogène etl'amélioration de la capacité de stockage dans (1) le magnésium et (2) les composés intermétalliques àbase de bore.(1) Les poudres de magnésium avec ajout de 10% massique d'oxyde de magnésium ont étébroyées à l'aide d'un broyeur planétaire à billes, par broyage mécanique réactif sous atmosphèred'hydrogène (10 bars) pendant 10 heures, en variant deux paramètres: la vitesse de broyage et le nombrede billes utilisées (i.e., le rapport massique poudre : billes). Il semblerait que les poudres broyées à250rpm en utilisant 17 billes (rapport de 1: 13) présentent des performances supérieures en termes de:taille des particules, contenu en MgH2 après broyage, surface spécifique et cinétiquesd'absorption/désorption de l'hydrogène. Nous avons vérifié que l'oxyde de magnésium a un effet deretardement significatif de la croissance des grains. Le calcul des énergies d'activation et l'étude descinétiques ont montré que l'oxyde de magnésium ne joue pas de rôle catalyseur pour la sorptiond'hydrogène.(2) Les composes synthétisés dans les systèmes ternaires La-MT-B, Gd-MT-B et Y-MT-B (MT=Ni,Fe, Co) ont été étudiés en termes de leur structure cristalline, composition chimique et propriétés desorption de l'hydrogène. La majorité des composés obtenus dans ces systèmes cristallisent avec unestructure type CeCo4B, avec des paramètres de maille proches de ceux du composé GdNi4B. Leremplacement total du Ni par des atomes de Fe et/ou Co est possible, indiquant l'existence d'une solutionsolide totale entre TRNi4B et TRFe4B ou TRCo4B. En outre, le bore est supposé occuper partiellementdeux sites cristallographiques différents, mais l'un seul d'entre eux est principalement occupé par le bore.La nouvelle phase GdNi2,5B2,5 a également été observée dans cette étude pour la première fois. Unephase pseudo-binaire GdB3 a été également reportée. Enfin, il est montré que seul le composé LaNi4Babsorbe l'hydrogène, quoique de manière irréversible.
|
Page generated in 0.0844 seconds