Spelling suggestions: "subject:"eactor design"" "subject:"eactor 1design""
1 |
THE DEVELOPMENT OF A METAL PLATE TEST REACTOR FOR STUDYING REACTION KINETICS ON CATALYTICALLY COATED HEAT TRANSFER COMPONENTSKHOSRAVI, AIDA 28 September 2012 (has links)
A novel catalytic metal plate test reactor was designed, built and commissioned. The overall dimensions of the whole assembly were 215 mm long 75 mm wide 60 mm deep. A strip of stainless steel with dimensions of 150 mm long 15 mm wide 1.59 mm thick was partly coated with catalyst and sealed between the two reactor parts. The design provided a single channel flow pattern that could be easily modeled to extract kinetic parameters. A key feature of the reactor design was effective heat transfer to promote isothermal operation. A series of thermocouples was incorporated into the reactor to measure the temperature profile along the reactor.
Performance of the reactor was verified using a well characterized commercially available Cu/Zn/Al2O3 catalyst from BASF. The goal of this experimentation was to determine the conversion, rate constant and activation energy for methanol steam reforming and compare these with previously published measurements.
Methanol conversion was measured at slightly higher than atmospheric pressure at temperatures of 220, 240 and 260 °C. Steam to water ratio of feed was maintained at one during the experimental program. The feed rate of methanol was varied to obtain a catalyst to feed ratio between 6 and 20 kgs mol-1. The composition of reformate and methanol conversion were studied with temperature and flow rate of the feed. An increase from 27.68 to 41.61% in methanol conversion was observed increasing the reaction temperature from 220 to 240°C.
An irreversible first order rate constant was calculated using the experimentally measured conversion and space time. The apparent activation energy (Ea) based on a first order plug flow design operation was 96±4 k.J.mol-1 and agreed well with the values of 77-105.1 kJmol-1 reported in the literature. / Thesis (Master, Chemical Engineering) -- Queen's University, 2012-09-28 12:39:38.392
|
2 |
Design and commissioning of a continuous isothermal fast pyrolysis reactorGlauber, Samuel Melville 14 January 2013 (has links)
In order to meet growing demands for alternatives to fossil fuels, biomass pyrolysis is
a method that has been explored in depth as a method to develop new liquid fuels. Fast
pyrolysis is a subtype of pyrolysis reaction in which a specimen is heated at rates in
excess of 10C/s in an oxygen-free environment, causing the specimen to thermally
degrade and release a volatile bio-oil. The goal of this thesis is to design and commission
a novel reactor for the continuous isothermal fast pyrolysis of ground biomass. The
reactor design utilizes a vibrating plate heated to a set pyrolysis temperature. Analytical
and empirically-derived vibratory transport models are presented for ground Pinus taeda
(loblolly pine) to assist in setting the desired pyrolysis reaction time. A condenser system
was designed to rapidly evacuate and chill the volatiles to prevent tar formation and
secondary reactions. Commissioning tests were run at a pair of temperatures and biomass
residence times to determine the degree of agreement between the reactor yields and
two-component volatile formation data derived from batch fast pyrolysis of Pinus taeda.
|
3 |
Conversion of methanol to light olefins on SAPO-34: kinetic modeling and reactor designAl Wahabi, Saeed M. H. 17 February 2005 (has links)
In this work, the reaction scheme of the MTO process was written in terms of elementary steps and generated by means of a computer algorithm characterizing the various species by vectors and Boolean relation matrices. The number of rate parameters is very large. To reduce this number the rate parameters related to the steps on the acid sites of the catalyst were modeled in terms of transition state theory and statistical thermodynamics. Use was made of the single event concept to account for the effect of structure of reactant and activated complex on the frequency factor of the rate coefficient of an elementary step. The Evans-Polanyi relation was also utilized to account for the effect of the structure on the change in enthalpy. The structure was determined by means of quantum chemical software.
The number of rate parameters of the complete reaction scheme to be determined from experimental data is thus reduced from 726 to 30. Their values were obtained from the experimental data of Abraha by means of a genetic algorithm involving the Levenberg-Marquardt algorithm and combined with sequential quadratic programming.
The retained model yields an excellent fit of the experimental data. All the parameters satisfy the statistical tests as well as the rules of carbenium ion chemistry. The kinetic model also reproduces the experimental data of Marchi and Froment, also obtained on SAPO-34. Another set of their data was used to introduce the deactivation of the catalyst into the kinetic equations.
This detailed kinetic model was used to investigate the influence of the operating conditions on the product distribution in a multi-bed adiabatic reactor with plug flow. It was further inserted into riser and fluidized bed reactor models to study the conceptual design of an MTO reactor, accounting for the strong exothermicity of the process. Multi-bed adiabatic and fluidized bed technologies show good potential for the industrial process for the conversion of methanol into olefins.
|
4 |
A Multi-Modular Neutronically Coupled Power Generation SystemPatel, Vishal 2012 May 1900 (has links)
The High Temperature Integrated Multi-Modular Thermal Reactor is a small modular reactor that uses an enhanced conductivity BeO-UO2 fuel with supercritical CO2 coolant to drive turbo-machinery in a direct Brayton cycle. The core consists of several self-contained pressurized modules, each containing fuel elements in pressurized channels surrounded by a graphite moderator, and Brayton cycle turbo-machinery. Each module is subcritical by itself, and when several modules are brought into proximity of one another, a single critical core is formed.
The multi-modular approach and use of BeO-UO2 fuel with graphite moderator and supercritical CO2 coolant leads to an inherently safe system capable of high efficiency operation. The pressure channel design and multi-modular approach eliminates engineering challenges associated with large pressure vessels. The subcriticality of the modules ensures inherent safety during construction, transportation, and after decommissioning.
Serpent, a continuous-energy Monte-Carlo reactor physics burnup calculation code, was used to develop a critical configuration of the subcritical modules using UO2 fuel enriched with 5 wt% 235U with a 5 wt% BeO additive. The core lifetime was found to be 14.6 years operating at 10 MWth, though the U enrichment and power can be altered to achieve desired core lifetimes. Negative fuel and moderator temperature coefficients of reactivity were found that could maintain safety during operation.
The multi-modular design was found to be beneficial compared to a core with all fuel elements in one module. Batch battery type refueling was found to be beneficial and the feasibility of controlling the reactor was demonstrated through the use of control shells that surround each module.
The HT-IMMTR design is an inherently safe, highly efficient, economically competitive, and most important, feasible reactor design that takes advantage of proven technologies to facilitate the demonstration of a successful commercial deployment.
|
5 |
Ανάπτυξη και σχεδιασμός καινοτόμων φωτοκαταλυτικών αντιδραστήρων για ενεργειακές και περιβαλλοντικές εφαρμογέςΝομικός, Γιώργος 17 April 2013 (has links)
Σκοπός της παρούσας εργασίας είναι η κινητική μελέτη της αντίδρασης παραγωγής υδρογόνου μέσω φωτοκαταλυτικής αναμόρφωσης της μεθανόλης και η ανάπτυξη μοντέλου για την περιγραφή του πεδίου της ακτινοβολίας στον πειραματικό φωτοαντιδραστήρα. Τα αποτελέσματα μπορούν να χρησιμοποιηθούν για τον υπολογισμό των κινητικών παραμέτρων της αντίδρασης και τον προσδιορισμό των σχεδιαστικών παραμέτρων που απαιτούνται για την ανάπτυξη και βελτιστοποίηση κατάλληλου φωτοαντιδραστήρα.
Η φωτοκαταλυτική διάσπαση του νερού με χρήση ημιαγωγών και ηλιακής ακτινοβολίας αποτελεί μια από τις πλέον υποσχόμενες διεργασίες για τη φωτοχημική μετατροπή και αποθήκευση της ηλιακής ενέργειας. Η αντίδραση μπορεί να λάβει χώρα μέσω διέγερσης ενός ημιαγωγού (π.χ. TiO2) από φωτόνια με ενέργεια ίση ή μεγαλύτερη από το ενεργειακό του χάσμα. Το αποτέλεσμα είναι η προώθηση ενός ηλεκτρονίου από τη ζώνη σθένους (VB) στη ζώνη αγωγιμότητας (CB) του υλικού και η δημιουργία μιας οπής στην ζώνη αγωγιμότητας:
(1)
Η συνήθης τύχη των φωτοπαραγόμενων φορέων φορτίου είναι η (μη επιθυμητή) επανασύνδεσή τους, που συνοδεύεται από έκλυση της αποθηκευμένης ενέργειας με τη μορφή θερμότητας:
(2)
Οι φωτοπαραγόμενες οπές και τα ηλεκτρόνια που καταφέρνουν να φθάσουν στην επιφάνεια του ημιαγωγού μπορούν, υπό ορισμένες προϋποθέσεις, να εκκινήσουν αντιδράσεις για την παραγωγή οξυγόνου και υδρογόνου μέσω οξείδωσης και αναγωγής του νερού, αντίστοιχα:
(3)
(4)
Το πρόβλημα είναι ότι ο ρυθμός παραγωγής υδρογόνου είναι πολύ μικρός, κυρίως λόγω της εγγενώς μικρής κβαντικής απόδοσης της διεργασίας, η οποία καθορίζεται από την αντίδραση επανασύνδεσης ηλεκτρονίου-οπής (Εξ.2). Η αντίδραση επανασύνδεσης μπορεί να κατασταλεί παρουσία κατάλληλων “θυσιαζόμενων” ενώσεων στο διάλυμα, οι οποίες αντιδρούν ταχέως και μη αντιστρεπτά με τις φωτοπαραγόμενες οπές. Με τον τρόπο αυτό αυξάνεται ο χρόνος ζωής των ηλεκτρονίων και, επομένως, ο ρυθμός παραγωγής υδρογόνου μέσω της Εξ. 4. Ως θυσιαζόμενες ενώσεις μπορούν να χρησιμοποιηθούν χαμηλού ή “αρνητικού” κόστους οργανικές ενώσεις, όπως παραπροϊόντα και παράγωγα βιομάζας. Οι ενώσεις αυτές οξειδώνονται προοδευτικά από τις οπές προς CO2, με αποτέλεσμα τα φωτοπαραγόμενα ηλεκτρόνια να ανάγουν αποδοτικά το νερό προς παραγωγή Η2. Η συνολική διεργασία μπορεί να περιγραφεί από την ακόλουθη γενική αντίδραση αναμόρφωσης:
(5)
Χαρακτηριστικά πλεονεκτήματα της μεθόδου αποτελούν ο σχετικά υψηλός ρυθμός παραγωγής υδρογόνου και το γεγονός ότι, σε αντίθεση με τις συνήθεις θερμοκαταλυτικές αντιδράσεις αναμόρφωσης, η αντίδραση πραγματοποιείται σε συνθήκες περιβάλλοντος. Επιπροσθέτως, η παραγωγή υδρογόνου μπορεί να λάβει χώρα με ταυτόχρονη αποικοδόμηση οργανικών ρύπων, με προφανή περιβαλλοντικά οφέλη.
Ένα άλλο σημαντικό πρόβλημα που σχετίζεται με τις περιορισμένες εφαρμογές των φωτοκαταλυτικών μεθόδων σε πιλοτική και βιομηχανική κλίμακα οφείλεται στη δυσκολία σχεδιασμού και ανάπτυξης αποδοτικών φωτοαντιδραστήρων. Το πρόβλημα του σχεδιασμού έγκειται στο γεγονός ότι, σε αντίθεση με τους συμβατικούς καταλύτες, η ενεργοποίηση ενός φωτοκαταλύτη δε γίνεται θερμικά αλλά μέσω απορρόφησης φωτονίων κατάλληλης ενέργειας. Επομένως, για την μοντελοποίηση ενός φωτοαντιδραστήρα απαιτείται, εκτός από τη χρήση των συνήθων εξισώσεων για τα ισοζύγια μάζας, θερμότητας και ορμής, μια επιπλέον εξίσωση για την περιγραφή του ισοζυγίου της ενέργειας της ακτινοβολίας στο σύστημα. Η εξίσωση αυτή χρησιμοποιείται για τον υπολογισμό του “τοπικού ογκομετρικού ρυθμού απορρόφησης ενέργειας” (local volumetric rate of energy absorption, LVREA), ο οποίος αποτελεί μια από τις σημαντικότερες σχεδιαστικές παραμέτρους ενός φωτοαντιδραστήρα διότι περιγράφει την ποσότητα των φωτονίων που απορροφούνται ανά μονάδα όγκου σε κάθε σημείο του αντιδραστήρα. Για τον σχεδιασμό του αντιδραστήρα είναι επίσης απαραίτητη και μία έκφραση του ρυθμού της αντίδρασης. Για την εξαγωγή αυτής της έκφρασης απαιτείται η εύρεση του ρυθμού του βήματος ενεργοποίησης μέσω ακτινοβολίας, ο οποίος εκφράζεται συναρτήσει του LVREA. Εφόσον ο ρυθμός αυτός είναι γνωστός μπορεί να εισαχθεί στο κινητικό μοντέλο της αντίδρασης ενώ οι διάφορες κινητικές παράμετροι μπορούν να υπολογιστούν πειραματικά. Μεταξύ των προσεγγίσεων που έχουν προταθεί για τον υπολογισμό του LVRΕA, οι πιο ακριβείς περιλαμβάνουν την αριθμητική επίλυση της εξίσωσης μεταφοράς ακτινοβολίας (radiation transfer equation, RTE).
Στην παρούσα εργασία χρησιμοποιείται η μέθοδος των “φασματικών στοιχείων” (spectral elements) για την επίλυση ενός μονοδιάστατου μοντέλου για την περιγραφή του πεδίου της ακτινοβολίας και τον υπολογισμό του LVREA σε έναν πειραματικό αντιδραστήρα, στον οποίο περιέχεται ο φωτοκαταλύτης σε μορφή αιωρήματος. Η αντίδραση που μελετάται είναι η παραγωγή υδρογόνου μέσω της φωτοκαταλυτικής αναμόρφωσης της μεθανόλης (Εξ. 6) σε αιώρημα καταλύτη 0.5%Pt/TiO2, το οποίο ακτινοβολείται με φως στη περιοχή που απορροφά το TiO2.
(6)
Σύμφωνα με το μοντέλο που αναπτύχθηκε, ο ρυθμός της φωτοκαταλυτικής αντίδρασης εξαρτάται από τη συγκέντρωση του καταλύτη στο αιώρημα, την ειδική ένταση ακτινοβολίας και τη συγκέντρωση του αντιδρώντος στο διάλυμα. Για τον σκοπό αυτό, μελετήθηκε στην παρούσα εργασία η επίδραση των λειτουργικών παραμέτρων της αντίδρασης, όπως η ένταση της προσπίπτουσας ακτινοβολίας (Ι0), η συγκέντρωση του φωτοκαταλύτη (Ccat) και η συγκέντρωση της μεθανόλης, (CMeOH) στο ρυθμό παραγωγής Η2 (rH2). Από τα αποτελέσματα προκύπτει ότι ο ρυθμός παραγωγής υδρογόνου εξαρτάται ισχυρά από τη συγκέντρωση του οργανικού υποστρώματος και αυξάνει κατά σχεδόν δύο τάξεις μεγέθους με αύξηση της CMeOH από 0 σε 1 mol L-1. Επιπλέον, αύξηση του ρυθμού επιτυγχάνεται με αύξηση του Ι0. Τα αποτελέσματα των φωτοκαταλυτικών πειραμάτων μπορούν να χρησιμοποιηθούν για τη μοντελοποίηση του συστήματος και το σχεδιασμό φωτοκαταλυτικού αντιδραστήρα για την παραγωγή υδρογόνου. / Heterogeneous photocatalytic reactions occurring at the surface of illuminated semiconductors, especially TiO2, have been the subject of extensive investigation in the last few years. This is because of the high potential of photocatalytic processes for a wide range of applications, which include mineralization of organic pollutants, disinfection of water and air, production of renewable fuels, and organic syntheses. Although remarkable progress has been made in fundamental research, applications in pilot and industrial scale are still in their infancy. This is mainly due to the lack of efficient solar photocatalysts and the difficulty of designing photoreactors able to integrate maximum light efficiency and mass transfer within one piece of equipment.
Regarding photoreactor design, complications arise from the mode of photocatalyst activation, which involves excitation of the semiconductor photocatalyst by photons of appropriate energy. Thus, in addition to the usual equations for mass, heat and momentum balances, photoreactor modelling requires an additional equation to describe the balance of radiation energy in the system. This equation is used to calculate the "local volumetric rate of energy absorption" (LVREA) which describes the amount of photons absorbed per unit volume at each point of the reactor and provides one of the major photoreactor design parameters. The LVREA depends on the characteristics of the incident radiation, the optical properties of the system, the type and concentration of the photocatalyst and the geometry of the reactor. Therefore, calculation of the LVREA requires knowledge of the distribution of the radiation field inside the reactor. Among the various approaches proposed to calculate the LVREA, the most accurate ones are those that solve numerically the “radiation transfer equation” (RTE). This requires the development of a mathematical model that describes the emission model of the radiation source and the radiation field inside the reactor.
In the present work, we have developed a one-dimensional spectral element algorithm for the description of the radiation field and the calculation of the LVREA in an experimental photoreactor containing the photocatalyst (Pt/TiO2) in suspension. The target reaction investigated was the photocatalytic reforming of methanol for hydrogen production (CH3OH+H2O→3H2+CO2). The radiation source used was a light emitting diode (LED), which emits radiation at wavelengths (λmax=390 nm) corresponding to the bandgap of TiO2 (3.2 eV). Our results refer to the effect of operating parameters such as incident light intensity (I0), photocatalyst content (CTiO2), and methanol concentration (CMeOH) on the rate of H2 production (rH2). They show that rH2 depends strongly on methanol concentration and increases by almost 2 orders of magnitude when CMeOH is increased from 0 to 1 mol L-1. A substantial enhancement of rH2 is also observed with increasing I0 or CTiO2. Results of photocatalytic experiments and photoreactor modelling are used to extract kinetic parameters for the methanol photoreforming reaction.
|
6 |
Development of photocatalytic reactor technology for the production of fermentable sugarsNagarajan, Sanjay January 2017 (has links)
Rapid depletion of fossil fuel stock with a simultaneous rise in greenhouse gas emissions has led to an increase in the need for alternative energy. Cellulose based biofuels, especially bioethanol is a form of alternative energy that has the potential to replace petrol. The first step in cellulosic bioethanol production is the release of fermentable sugars via pre-treatment. Conventionally, physico-chemical and biological pre-treatment methods are energy intensive, environmentally unfavourable and expensive. This study, however reports on the use of a less energy consuming, cheap and environmental friendly alternative; photocatalysis, to produce fermentable sugars from cellulose. To achieve this, a range of photocatalysts were first screened based on their OH radical production rates using coumarin as a probe. TiO2 P25 was the photocatalyst that was found to have the highest OH radical production rate of 35.6 μM/hr, followed by Pt-C3N4 (0.88 μM/hr) and WO3 (0.28 μM/hr). LaCr-SrTiO3, Cr-SrTiO3 and yellow TiO2 did not produce any OH radicals due to their unsuitable electronic structure. P25 was further used for photocatalytic fermentable sugar production from cellulose. Photocatalytic cellulose I breakdown produced 0.04 % fermentable sugars whereas, with cellulose II feedstock the yield increased to 0.2 %. To further improve the yield, membrane bags were deployed which improved the sugar yields to 0.43 % and 0.71 % respectively from cellulose and cellulose II feedstocks. Photonic efficiencies followed the same trends as the sugar yields. Engineering design was further opted to enhance the sugar yields and hence a stacked frame photocatalytic reactor (SFPR) was designed. Various mixer configurations were designed and their mixing regime was determined using COMSOL Multiphysics 5.1 simulations. Amongst the mixers simulated, an 8-blade Rushton impeller was found to be the best configuration due its superior radial mixing profile and higher fluid velocity. The SFPR was then fabricated and operated with the impeller or a plus shaped magnetic bar as the mixer and the sugar yields were determined. Highest sugar yield and photonic efficiency was obtained from the cellulose II-impeller setup and was calculated to be 2.61 % and 9.45 % respectively. Respective lowest yields were obtained with cellulose I-stirrer bar setup and calculated to be 1.71 % and 5.64 %. Furthermore, the effect of H2O2 on fermentable sugar production was also tested. The cellulose II-stirrer bar configuration yielded 3.15 % fermentable sugars with the addition of 0.01 wt% H2O2 to the reaction mixture. The yield improved significantly to 14.1 % when the concentration of H2O2 was increased to 0.1 wt%.
|
7 |
Catalytic Fast Pyrolysis of Biomass for the Production of Fuels and ChemicalsCarlson, Torren Ryan 01 September 2010 (has links)
Due to its low cost and large availability lignocellulosic biomass is being studied worldwide as a feedstock for renewable liquid biofuels. Currently there are several routes being studied to convert solid biomass to a liquid fuel, which involve multiple steps at long residence times thus greatly increasing the cost of biomass processing. Catalytic fast pyrolysis (CFP) is a new promising technology to convert directly solid biomass to gasoline-range aromatics that fit into the current infrastructure. CFP involves the rapid heating of biomass (~500˚C sec-1) in an inert atmosphere to intermediate temperatures (400 to 600 ˚C) in the presence of zeolite catalysts. During CFP, biomass is converted in a single step to produce gasoline-range aromatics which are compatible with the gasoline of the current market. CFP has many advantages over other conversion processes including short residence times (2-10 s) and inexpensive catalysts. The major impediment to the further development of CFP is the lack of fundamental understanding of the underlying chemistry of the process. The first goal of this thesis is to study the underlying chemistry of the CFP process using model compounds in a small pyroprobe micro reactor. For this part of the study the homogeneous thermal decomposition routes of glucose were identified along with the key intermediates. Through isotopic labeling studies the heterogeneous C-C bond forming reactions were determined. Lastly, the relative rates of the homogeneous and heterogeneous reactions were estimated. Since CFP in the small pyroprobe reactor is not scalable the second part of the study focused on designing and building a bench scale fluidized bed reactor to demonstrate CFP on a larger scale. This fluidized bed reactor was used to optimize the CFP of pine wood with ZSM-5 catalyst. The effect of reaction conditions such as temperature and biomass space velocity on the aromatic yield and selectivity was determined. The long term stability of the catalyst was also studied.
|
8 |
Simulation and optimization of steam-cracking processesCampet, Robin 17 January 2019 (has links) (PDF)
Thermal cracking is an industrial process sensitive to both temperature and pressure operating conditions. The use of internally ribbed reactors is a passive method to enhance the chemical selectivity of the process, thanks to a significant increase of heat transfer. However, this method also induces an increase in pressure loss, which is damageable to the chemical yield and must be quantified. Because of the complexity of turbulence and chemical kinetics, and as detailed experimental measurements are difficult to conduct, the real advantage of such geometries in terms of selectivity is however poorly known and difficult to assess. This work aims both at evaluating the real benefits of internally ribbed reactors in terms of chemical yields and at proposing innovative and optimized reactor designs. This is made possible using the Large Eddy Simulation (LES) approach, which allows to study in detail the reactive flow inside several reactor geometries. The AVBP code, which solves the Navier-Stokes compressible equations for turbulent flows, is used in order to simulate thermal cracking thanks to a dedicated numerical methodology. In particular, the effect of pressure loss and heat transfer on chemical conversion is compared for both a smooth and a ribbed reactor in order to conclude about the impact of wall roughness in industrial operating conditions. An optimization methodology, based on series of LES and Gaussian process, is finally developed and an innovative reactor design for thermal cracking applications, which maximizes the chemical yield, is proposed
|
9 |
Atomic layer deposition of metal and metal chalcogenide thin films and nanolaminate composites.Volkmann, Christian 23 November 2017 (has links)
No description available.
|
10 |
The Design and Testing of a Novel Batch Photocatalytic Reactor and PhotocatalystSasser, Shawn 07 June 2016 (has links)
With an ever-increasing human population, the importance in having sustainable energy resources is becoming increasingly evident, as the current energy habits have brought about massive atmospheric pollution in the form of CO2 emissions, resulting in a rise in the average global temperature. To battle the effects of climate change, many alternative energy resources have been investigated. Among these, photocatalytic conversion of CO2 to renewable hydrocarbon fuels such as methane and methanol is one of the most desirable, as it provides the opportunity to utilize the sun’s energy to convert CO2 to renewable fuels. The work in this study is primarily focused on developing a batch photoreactor system to improve the integrity of photocatalytic experiments and using that system to test the performance of Er-doped solid solutions of ZnO/GaN (ZG) towards photocatalytic reduction of CO2.
To upgrade the abilities from previous photoreactor systems, a novel photoreactor was deigned in SolidWorks and fabricated in-house. The photoreactor was designed to increase surface area at the gas-solid interface, improve utilization of the light source, and promote larger mass transfer rates of reactants to the catalyst surface. These goals were accomplished by immobilizing the catalyst on a transparent porous support, incorporating a threaded mount on top of the photoreactor for mounting an interchangeable LED to illuminate the catalyst bed, and recirculating the gas mixture through a closed loop system with a compressor, respectively.
Pure and Er-doped ZG photocatalyst samples were synthesized through the nitridation of Zn/Ga/CO3 layered double hydroxide (LDH) precursors. Erbium was chosen as a dopant to potentially enhance the photocatalyst by utilizing its upconversion photoluminescence properties. The LDH precursors were synthesized using a coprecipitation method. Levels of erbium doping were varied by [Er]/[Zn] = 0, 0.025, 0.05, and 0.10. ZnO/GaN solid solutions were chosen for their low bandgap energy so that visible light, roughly 40% of the solar spectrum [1], can be used to activate the catalyst. Diffuse reflectance spectroscopic data of the pure and Er-doped ZG samples were measured and used to calculate the bandgap energy. Bandgap values of EG = 2.53, 2.52, 2.56, and 2.56 eV were obtained for the [Er]/[Zn] = 0, 0.025, 0.05, and 0.10 samples, respectively. XRD data of the LDH samples indicated the formation of Zn/Ga/CO3 LDH and the Zn(OH)2, β-Ga2O3, α-GaOOH, and ZnGa2O4 impurity phases. Moreover, the broadening of the diffraction peaks in the Er-doped LDH samples suggested Er3+ ions substituted the Ga3+ ions in the LDH structure. XRD data of the pure and Er-doped ZG samples revealed strong peaks at 2θ = 31.86, 34.37, and 36.31°, indicating the formation of a solid solution of ZnO and GaN. Additionally, peaks at 2θ = 29.27, 48.79, and 57.86° indicate the formation of the secondary phase of Er2O3 in the Er-doped samples. Consequently, it was concluded that the Er3+ ions did not go into the crystal structure of the oxynitride solid solution. These findings were supported by the SEM images revealing hexagonal nanoplates and nanoprisms that coincide with the solid solution along with additional nanostructures corresponding to the Er2O3 phase.
During photocatalytic experiments with the pure and Er-doped ZG samples, CO2, and UV light (405 nm nominal wavelength), hydrocarbon production was observed to increase with increasing [Er/Zn]. However, results from control experiments with no catalyst while varying the nominal LED wavelength and the o-ring material suggested that hydrocarbon formation was partially or entirely the result of the o-ring photochemically degrading in the presence of UV light. An o-ring comprised of a silicone material yielded zero hydrocarbon formation in the presence of UV light, while this was not the case for o-ring materials of Viton® and Kalrez®. These findings can be applied to other research groups that plan to perform photocatalytic experiments in a photoreactor with o-rings while using a UV light source.
|
Page generated in 0.0481 seconds