• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PLATO: A Coordination Framework for Designers of Multi-Player Real-Time Games

2013 April 1900 (has links)
Player coordination is a key element in many multi-player real-time digital games and cooperative real-time multi-player modes are now common in many digital-game genres. Coordination is an important part of the design of these games for several reasons: coordination can change the game balance and the level of difficulty as different types and degrees of coordination can make the game easier or more difficult; coordination is an important part of ‘playing like a team’ which affects the quality of play; and coordination as a shared activity is a key to sociality that can add to the sociability of the game. Being able to exercise control over the design of these coordination requirements is an important part of developing successful games. However, it is currently difficult to understand, describe, analyze or design coordination requirements in game situations, because current frameworks and theories do not mesh with the realities of video game design. I developed a new framework (called PLATO) that can help game designers to understand, describe, design and manipulate coordination episodes. The framework deals with five atomic aspects of coordinated activity: Players, Locations, Actions, Time, and Objects. PLATO provides a vocabulary, methodology and diagram notation for describing and analyzing coordination. I demonstrate the framework’s utility by describing coordination situations from existing games, and by showing how PLATO can be used to understand and redesign coordination requirements.

Page generated in 0.0628 seconds