• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Real-Time Ethernet Networks Simulation Model

Pensawat, Taweewit January 2006 (has links)
<p>Real-time networks are traditionally built on proprietary standards, resulting in a interoperability issues between different real-time netork implementations and traditional data networks mainly used in back office operations.</p><p>Continuity and supplier independence are a cause of concern with current</p><p>proprietary real-time networks.</p><p>This project evaluates the capability of providing real-time traffic over</p><p>switched Ethernet with EDF scheduling algorithm implemented at both the</p><p>switch and the node. By using OMNET simulation tool at packet level, it</p><p>is shown that the EDF implementation in switched Ethernet can guarantee</p><p>real-time traffic over the network and at the same time supporting non real-time traffic.</p>
2

Real-Time Ethernet Networks Simulation Model

Pensawat, Taweewit January 2006 (has links)
Real-time networks are traditionally built on proprietary standards, resulting in a interoperability issues between different real-time netork implementations and traditional data networks mainly used in back office operations. Continuity and supplier independence are a cause of concern with current proprietary real-time networks. This project evaluates the capability of providing real-time traffic over switched Ethernet with EDF scheduling algorithm implemented at both the switch and the node. By using OMNET simulation tool at packet level, it is shown that the EDF implementation in switched Ethernet can guarantee real-time traffic over the network and at the same time supporting non real-time traffic.
3

Performance Analysis of the Preemption Mechanism in TSN

Murselović, Lejla January 2020 (has links)
Ethernet-based real-time network communication technologies are nowadays a promising communication technology for industrial applications. It offers high bandwidth, scalability and performance compared to the existing real-time networks. Time-Sensitive Networking is an enhancement for the existing Ethernet standards thus offers compatibility, cost efficiency and simplified infrastructure, like previous prioritization and bridging standards. Time-Sensitive Networking is suitable for networks with both time-critical and non-time-critical traffic. The timing requirements of time-critical traffic are undisturbed by the less-critical traffic due to TSN features like the Time-Aware Scheduler. It is a time-triggered scheduling mechanism that guarantees the fulfilment of temporal requirements of highly time-critical traffic. Features like the Credit-Based Shapers and preemption result in a more efficiently utilized network. This thesis focuses on the effects that the preemption mechanism has on network performance. Simulation-based performance analysis of a singe-node and singe-egress port model for different configuration patterns is conducted. The simulation tool used is a custom developed simulator called TSNS. The configuration patterns include having multiple express traffic classes. In a single-egress port model, the most significant performance contributor is the response time and this is one of the simulation measurements obtained from the TSNS network simulator. The comparison between the results of these different network configurations, using realistic traffic patterns, provides a quantitative evaluation of the network performance when the network is configured in various ways, including multiple preemption scenarios.
4

Amélioration des délais de traversée pire cas des réseaux embarqués à l’aide du calcul réseau / Enhancement of worst case traversal time for embedded networks with network calculus

Mangoua sofack, William 30 June 2014 (has links)
Le calcul réseau (network calculus) est une théorie basée sur l’algèbre min-plus. Il offre un cadre formel de modélisation des réseaux de communication. Il a été utilisé pour certifier le réseau AFDX embarqué dans l’A380 de Airbus. Seulement, les bornes sur le délai annoncés par ces travaux de certification souffrent d’une sur-approximation dans le cas précis de l’agrégation dans un contexte de priorité statique non préemptive.L’objectif de nos travaux est de réduire cette sur-approximation. Dans cette thèse, nous proposons un service résiduel permettant d’obtenir de meilleurs bornes sur le délai dans le cas de la politique à priorité statique non préemptive et de la politique DRR. Nous montrons aussi comment ces deux politiques peuvent être combinées dans une politique hiérarchique à deux niveaux. / The thesis addresses performance analysis of embedded real time network using network calculus. Network calculus is a theory based on min-plus algebra. We use network calculus to assess the quality of service of a residual flow in two context : aggregation with non-preemptive priority policy and DRR policy. The main contribution concerns the evaluation of residual service, given to each flow. We also present how to handle DRR and non-preemptive priority policy hierrachically.

Page generated in 0.0382 seconds