Spelling suggestions: "subject:"eec 1protein"" "subject:"eec 2protein""
1 |
In vitro Studies Towards Understanding The Function And Aggregation Properties Of Escherichia Coli RecA ProteinMahalakshmi, S 03 1900 (has links) (PDF)
No description available.
|
2 |
Genetic Analysis And Biochemical Activities Of β Protein : A Component Of Bacteriophage λ General Genetic RecombinationErraguntla, Mythili 07 1900 (has links) (PDF)
No description available.
|
3 |
Expression, Purification And Functional Characterization Of RecA Protein Of Mycobacterium Tuberculosis : Implications For Allele Exchange In MycobacteriaVaze, Moreshwar Bhanudas 07 1900 (has links) (PDF)
No description available.
|
4 |
Visualization of replication-dependent DNA double-strand break repair in Escherichia coliAmarh, Vincent January 2017 (has links)
Chromosomal replication is a source of spontaneous DNA double-strand breaks (DSBs). In E. coli, DSBs are repaired by homologous recombination using an undamaged sister template. During repair, the RecA protein polymerizes on single-stranded DNA generated at the site of the DSB and catalyses the search for sequence homologies on the undamaged sister template. This study utilized fluorescence microscopy to investigate the spatial and temporal dynamics of the RecA protein at the site of a replication-dependent DSB generated at the lacZ locus of the E. coli chromosome. The DSB was generated by SbcCD-mediated cleavage of a hairpin DNA structure formed on the lagging strand template of the replication fork by a long palindromic sequence. The tandem insertion of a recA-mCherry gene with the endogenous recA gene at the natural chromosomal locus produced no detectable effect on cell viability in the presence of DSB formation. During repair, the fluorescently-labelled RecA protein formed a transient focus, which was inferred to be the RecA nucleoprotein filament at the site of the replication-dependent DSB. The duration of the RecA focus at the site of the DSB was modestly reduced in a ΔdinI mutant and modestly increased in a ΔuvrD or ΔrecX mutant. Most cells underwent a period of extended cohesion of the sister lacZ loci after disappearance of the RecA focus. Segregation of the sister lacZ loci was followed by cell division, with each daughter cell obtaining a copy of the fluorescently-labelled lacZ locus. The RecA focus at the site of the DSB was observed predominantly between the mid-cell and the 1⁄4 position. In the absence of DSB formation, the lacZ locus exhibited dynamic movement between the mid-cell and the 1⁄4 position until the onset of segregation. Formation of the DSB and initiation of repair occurred at the spatial localization for replication of the lacZ locus while the downstream repair events occurred very close to the mid-cell. Genomic analysis of RecA-DNA interactions by ChIP-seq was used to demonstrate that the RecA focus at the lacZ locus was generated by the repair of the palindrome-induced DSB and not the repair of one-ended DSBs emanating from stalled replication forks at the repressor-bound operator arrays. This study has shown that the repair of a replication-dependent DSB occurs exclusively during the period of cohesion of the sister loci and the repair is efficiently completed prior to segregation of the two sister loci.
|
5 |
Mycobacterium Smegmatis RecA And SSB : Structure-Function Relationships, Interaction With Cofactors And Accessory ProteinsManjunath, G P 10 1900 (has links)
Homologous genetic recombination, because of its fundamental roles in the maintenance of genome stability and evolution, is an essential cellular function common to all organisms. This process also plays important roles in the repair of damaged DNA molecules, generation of genetic diversity and proper segregation of chromosomes. The genetic exchange is a highly orchestrated process that entails a plethora of control mechanisms and a large number of proteins, of which RecA and SSB are two proteins that have been chosen for further investigation(s) in the present study. In addition, we have also investigated the interaction between SSB and UvrD1, which plays an important role in DNA repair pathways, especially nucleotide excision repair (NER) and mismatch repair as well as DNA replication and recombination. Chapter 1 reviews the literature regarding various aspects of homologous recombination, with an emphasis on the biochemical and the biophysical aspects of RecA and SSB proteins. In addition, it provides an overview of the study of DNA repair and recombination in mycobacteria.
RecA protein is ubiquitous and well conserved among bacterial species. Many archaeal species possess two RecA homologues (RadA and RadB) and eukarya possess multiple homologues of RecA including, Rad51, Rad51B, Rad51C, Rad51D, DMC1, XRCC2, or XRCC3. RecA or its homologues function as polymers, consisting of hundreds of monomers that cooperatively polymerize on single-stranded DNA to form a nucleoprotein filament. E. coli RecA protein participates in Trans Lesion Synthesis (TLS) of DNA and forms the minimal mutasome in association with DNA polymerase V (UmuD’2C). The fundamental mechanism underlying HR, i.e. DNA strand exchange, is one of the most fascinating examples of molecular recognition and exchange between biological macromolecules.
Since the isolation of E. coli recA gene and the subsequent purification of its gene product and also from other organisms, RecA protein has been studied extensively for more than three decades. E. coli RecA protein has pivotal roles in DNA recombination and repair, and binding to DNA in the presence of ATP, is a fundamental property of RecA protein resulting in the formation of a nucleoprotein filament. This is the slow step of the HR process, and is considerably faster on ssDNA than on duplex DNA. Binding of RecA to dsDNA is slower at physiological pH, is accelerated at acidic pH, and the lag in binding at the higher pH values is due to slow nucleation. The ATP and the DNA binding functions of RecA display allosteric interaction such that ATP- binding leads to an increase in affinity to ssDNA-binding and vice-versa. X-ray structures of E. coli RecA complexed with nucleotide cofactors have implicated a highly conserved Gln196 in Mycobacterium smegmatis RecA in the coupling of ATP and the DNA binding domains. The carboxyamide group of Gln196 makes an H-bond with the γ-phosphate group of ATP and the side chain of this residue is observed to move by approximately 2Å towards the ATP, relative to the other residues involved in ATP binding. In addition, a highly conserved Arg198 has also been postulated to interact with the γ-phosphate group of bound ATP and position it for a nucleophilic attack by a conserved residue-Glu96 leading to ATP hydrolyses.
To elucidate the role of Gln196 and Arg198 in the allosteric modulation of RecA functions, we generated MsRecA variant proteins, where in Gln196 was substituted with alanine, asparagine or glutamate; Arg198 was mutated to a lysine. The biochemical characterization of MsRecA and its variant proteins with the objective of defining the allosteric interaction between the ATP- and the DNA-binding sites has been described with in Chapter 2. We observed that while the mutant MsRecA proteins were proficient in ATP-binding they were deficient in ATP hydrolyses. We assayed for the ability of these proteins to bind ssDNA using either nitrocellulose filter binding or Surface Plasmon Resonance (SPR). While we did not detect any ssDNA-binding by the mutant MsRecA proteins in the filter binding assay, we observed only ten-fold reduction in the affinity for ssDNA as compared to wild type MsRecA protein in MsRecAQ196A, Q196N and R198K in the SPR assay. MsRecA Q196E did not show any binding to ssDNA, in both nitrocellulose filter-binding as well as SPR assays. We assayed for the ability of the mutant RecA proteins for their ability to promote DNA-pairing as well as DNA strand exchange. While we observed limited pairing promoted by the mutant proteins relative to the wild-type MsRecA, we observed a complete abrogation of strand exchange in the case of mutant proteins. In addition, we assayed for the co-protease function of MsRecA, by monitoring the cleavage of MtLexA. We observed that only the wild-type MsRecA protein was able to cleave MtLexA, while none of the mutant RecA proteins were able to do so. In order to understand the differences observed between the wild -type and the mutant MsRecA proteins, we analyzed the conformational state of MsRecA and its variant proteins by circular dichroism spectroscopy upon ATP-binding. We observed that while MsRecA and MsRecAQ196N displayed a reduction in the absorbance at 220 nm upon ATP binding, we did not observe any such structural transitions in the other mutant MsRecA proteins that we tested.
Based on our observations and the crystal structure of E. coli RecA bound to ssDNA, in Chapter 2, we propose a dual role for the Gln196 and Arg198 in modulating RecA activities. In the presynaptic filament Gln196 and Arg198 sense the presence of the nucleotide in the nucleotide binding pocket and initiate a series of conformation changes that culminate in the transition to an active RecA nucleoprotein filament. In the active RecA nucleoprotein filament these residues are repositioned such that they now form a part of the protomer-protomer interface. As such they perform two vital functions; they stabilize the protomer-protomer interface by participating in the formation of hydrogen bonds that span the interface as well transmit the wave of ATP hydrolysis across the interface leading to a coordinated hydrolyses of ATP essential for the heteroduplex extension phase of strand exchange reaction.
The members of the super family of single stranded DNA binding proteins (SSB) play an important role in all aspects of DNA metabolism including DNA replication, repair, transcription and recombination. Prokaryotic SSBs bind ssDNA with high affinity and generally with positive cooperativity. Several lines of evidence suggest that prokaryotic SSBs are modularly organized into three distinct domains: the N-terminal DNA binding domain and acidic C-terminal domain are linked by a flexible spacer. Studies from our laboratory have revealed that M. smegmatis SSB plays a concerted role in recombination-like activities promoted by the cognate RecA.
The C- terminal of SSB is known to be involved in its ability to interact with other proteins. We have previously reported that the C-terminal domain of M. smegmatis SSB, which is not essential for interaction with DNA, is the site for the binding of cognate RecA. The data in Chapter 3 describes the characterization of the SSB C-terminus with the objective of delineating the elements responsible for mediating protein-protein interaction, as well as to define the mechanism by which SSB is able to modulate the activities of RecA. To map the RecA interaction domain of SSB we created deletion mutants in MsSSB lacking 5, 10, 15 or 20 residues from the C-terminal. The truncated SSB proteins were expressed with a His- tag at the N- terminus and purified to homogeneity using a Ni-NTA affinity matrix. We observed unlike MsSSB, MsSSB∆C5 and MsSSB∆C10, MsSSB∆C15 and MsSSB∆C20 were unable to support three-strand exchange catalyzed by MsRecA. Based on the observation that interaction with SSB is essential for MsRecA to catalyze the strand Exchange reaction, we postulate that the RecA interacting domain of SSB is situated between the 15th and the 20th residue from the C-terminal. Further, the C-terminal of MsSSB modulates the transitions between DNA binding modes. Unlike the case with EcSSB where deletion of the last 8 residues from the C-terminal stabilizes the (SSB)35 mode of ssDNA binding, we observe that in case of MsSSB the deletion of C-terminal seems to destabilize the (SSB)35. In addition, the transition from the low density binding mode to a high density mode involves the formation of several intermediates when the C-terminal residues are deleted.
With the objective of understanding the functions to the C-terminal of SSB independent of its DNA-binding domain in modulating RecA functions, we employed a peptide corresponding to the 35 residues from the C-terminal of the MsSSB. We observed that the C-terminal region alone is capable of interacting with RecA. In addition we also observed that the C-terminal domain of SSB stimulates RecA functions independent of its DNA binding domain.
To address the question, whether the stimulatory effect of the C-terminal domain of SSB in the absence of its DNA-binding domain is restricted to RecA or is a generalized phenomenon associated with all SSB interacting proteins; we tested the effect of C-terminal domain of SSB on UvrD which is known to interact with SSB. UvrD participates in several pathways of DNA metabolism, which include the nucleotide excision repair (NER) and mismatch repair pathway, replication and recombination. Genetic evidence suggests that UvrD and SSB interact in vivo. We tested the effect of mycobacterial SSB on M. tuberculosis UvrD1 (MtUvrD1) functions in vitro. We observe that MtUvrd1 physically interacts with SSB. Further, presence of SSB has an inhibitory effect on the helicase activity of MtUvrD1 and that this effect is dependent on the C-terminal region as the deletion of residues from the C-terminal of SSB abrogates the inhibitory effect of SSB. However, unlike RecA, the C-terminal region of SSB alone had no effect on the helicase activity of UvrD1. We also observed that MsSSB has opposing effects on the ATPase activity of MtUvrD1. In the presence of low concentrations of SSB the ATPase activity is enhanced, while we observed an inhibition when the concentration of MsSSB is high.
The precise mechanistic details of how SSB is able to act as an accessory protein to RecA, in context of homologous recombination and stimulates its biochemical activities have been a subject of debate. Whereas research from some groups has shown that the stimulatory effect SSB is mediated through its ability to melt DNA secondary structure, thereby allowing RecA to overcome the kinetic barrier imposed by the presence of secondary structure in ssDNA, others postulate that SSB plays a direct role in the stabilization of RecA nucleoprotein filament and prevents its dissociation. Chapter 3 discusses the experimental evidence in favor of the aforesaid models and based on the results of our experiments; we propose that the accessory functions of SSB may be mediated by a mechanism that involves elements of both models. While interaction with SSB can bring about a conformational change in RecA that is reflected in the enhanced levels of strand exchange and co-protease activity, the helix destabilizing function of SSB is essential during heteroduplex extension and to sequester the displaced strand such that it does not participate in any further pairing reactions. The novel finding that we present in Chapter 3 is that the interaction of SSB C-terminal alone has a stimulatory effect upon RecA activities. Furthermore, we observed that M. tuberculosis UvrD1 is a weak interaction partner of SSB. The physical and functional interactions between MsSSB with RecA on the one hand, and MsSSB and UvrD1 on the other highlight different types of cross-talk between the components of HR and DNA repair pathways. In contrast to the results of earlier studies, our results indicate that protein-protein interactions alone between SSB and RecA may modulate the RecA mediated processes of presynapsis, homologous pairing and strand exchange between homologous DNA molecules as well as modulate its co-protease activity. In addition, our studies indicate that a direct protein-protein interaction is responsible for the modulation of UvrD1 activities by SSB.
|
6 |
Understanding the Mechanism of Homologous Recombination in Mycobacterium Tuberculosis : Exploring RecA as an Antibacterial Target and Characterization of Holliday Junction ResolvasesNautiyal, Astha January 2015 (has links) (PDF)
Homologous recombination (HR) is conserved across all three domains of life and is associated with a number of key biological processes. Over the years, numerous genetic, biochemical and structural studies have uncovered important mechanistic details and established a role for HR in DNA damage repair, control of DNA replication fidelity and suppression of various types of cancer. Much of our current understanding of the mechanistic aspects of HR is gained from the study of Escherichia coli paradigm. E. coli RecA is the founding member of a nearly ubiquitous family of multifunctional proteins and is substantially conserved among eubacterial species. During HR, RecA protein promotes homologous pairing followed by strand exchange reaction leading to heteroduplex formation. In addition to HR, RecA is a central component of SOS response, recombinational DNA repair and rescue of collapsed replications forks. Moreover, recent work has suggested that DNA recombination/repair mechanisms might contribute to genome evolution and consequently to the generation of multidrug-resistant strains of the pathogen.
The disease caused by Mycobacterium tuberculosis, endemic in certain regions of the world, is a leading cause of disability and death. A thorough knowledge of the function and interaction of specific HR proteins/enzymes involved in the maintenance of genome integrity is essential in order to elucidate the impact of genome perturbation effects on M. tuberculosis. Toward this end, modulation of RecA protein activity, a central component of HR, represents a potential novel target for design of new drugs because of its involvement in various processes of DNA metabolism. Additionally, small molecule modulators of RecA activity may offer novel insights into the regulation and its role in cellular physiology and pathology. Traditionally, antibiotics have been used to treat infections caused by bacteria. Despite their importance, the development of new antibiotics against M. tuberculosis has considerably decreased over the past several years due to disappointing results in clinical trials. These failures may be due the fact that they suffer from low potency or low cell permeability. Therefore, one of the aims of studies described in this thesis was to test the effect of suramin, a known inhibitor of E. coli RecA, on various biochemical activities of mycobacterial RecA proteins and determine its mechanism of action. Furthermore, the most crucial step in the HR pathway and rescue of collapsed DNA replication forks is the resolution of Holliday junctions and other branched intermediates. Because Holliday junction resolvases are essential for the resolution of different types of DNA recombination/repair intermediates, therefore, we considered it worthwhile to study the genomic expression and biochemical properties of HJRs in M. tuberculosis.
Suramin is a commonly used antitrypanosomal and antifiliarial drug, and a novel experimental agent for the treatment of several cancers. A forward chemical screen assay identified several small molecule inhibitors of E. coli RecA. In this screen, suramin (also called germanin), a polysulfonated naphthylurea, and suramin-like agents were found to inhibit EcRecA catalyzed ATPase and DNA strand exchange activity. However, the mechanism underlying such inhibitory action of suramin and whether it can exert antibacterial activity under in vivo conditions remains largely unknown. In an attempt to delineate the range of suramin action, we reasoned that it might be useful to test its effect on mycobacterium RecA proteins. We found that suramin is a potent inhibitor of all known biochemical activities of mycobacterial RecA proteins with IC50 values in the low μM range. The mechanism of action involves, in part, its ability to disassemble the nucleoprotein filaments of RecA-ssDNA. To validate the above results and to obtain quantitative data, a pull-down assay was developed to assess the effect of suramin on RecA–ssDNA filaments. The data indicated that suramin was able to dissociate >80% of RecA bound to ssDNA. Altogether, these results indicated the effectiveness of suramin in the disassembly of RecA nucleoprotein filament. Next, we sought to test whether suramin binds to RecA by using a CD spectropolarimeter. Significant spectral changes were observed upon addition of increasing concentrations of suramin, indicating alterations in the secondary structure of RecA protein. Additional evidence revealed that suramin impaired RecA catalyzed proteolytic cleavage of LexA repressor and blocked ciprofloxacin-inducible recA gene expression and SOS response. More importantly, suramin potentiated the cidal action of ciprofloxacin and reduced the growth of Mycobacterium smegmatis recA+ strain but not its isogenic recA∆ mutant, consistent with the idea that it acts directly on RecA protein. This approach, which appears as an appealing concept, opens up new possibilities to chemically disrupt the pathways controlled by RecA and treat drug-sensitive as well as drug-resistant strains of M. tuberculosis for better infection control and the development of new therapies.
The annotated genome sequence of M. tuberculosis revealed the presence of putative homologues of E. coli DNA recombination/repair genes. However, it is unknown whether these putative genes have the ability to encode catalytically active proteins or participate in biochemical reactions intrinsic to the process of HR or DNA repair. Studies in the second half of the thesis originated from an in silico analysis for genes that encode functional equivalents of E. coli RuvC HJ resolvase(s) in M. tuberculosis. The central intermediate formed during mitotic and meiotic recombination is a four-way DNA junction, also known as the Holliday junction (HJ), and its efficient resolution is essential for proper segregation of chromosomes. The resolution of HJ is mediated by a group of structure specific endonucleases known as the Holliday junction resolvases (HJR) which have been identified in a wide variety of organisms based on their shared biochemical characteristics. Bioinformatics analyses of the evolutionary relationships among HJ resolvases suggests that HJR function has arisen independently from four distinct structural folds, namely RNase H, endonuclease VII-colicin E, endonuclease and RusA. Furthermore, similar analyses of HJRs identified another family within the RNaseH fold, along with previously characterized RuvC family of junction resolvases. This new family of putative HJRs is typified by E. coli Yqgf protein. The yqgf gene is highly conserved among bacterial genomes. Nuclear magnetic resonance structural studies have disclosed notable structural similarities between E. coli RuvC and YqgF proteins. Utilizing homology-based molecular modelling, YqgF is predicted to function as a nuclease in various aspects of nucleic acid metabolism. Sequence analysis of M. tuberculosis genome has revealed the presence of two putative HJ resolvases, ruvC (Rv2594c) and ruvX (Rv2554c, yqgF homolog). Previous studies have demonstrated that M. tuberculosis ruvC is induced following DNA damage and ruvX is expressed during active growth phase of M. tuberculosis. More importantly, the absence of ruvC increased the potency of moxifloxacin in M. smegmatis. Although, these results imply that the ruv genes play crucial roles in DNA recombination and repair in M. tuberculosis, the biochemical properties of their gene products have not been characterized. In this study, we have isolated M. tuberculosis ruvC and yqgF genes and purified their encoded proteins, M. tuberculosis RuvC (MtRuvC) and M. tuberculosis RuvX (MtRuvX), respectively, to near homogeneity. Protein-DNA interaction assays conducted with purified MtRuvC and MtRuvX revealed that both can bind HJ, albeit with different affinities. However, in contrast to MtRuvC, MtRuvX showed robust HJ resolvase activity. The endonuclease activity of MtRuvX was completely dependent on Mg2+and Mn2+ partially substituted for Mg2+.
Additional experiments showed that RuvX exhibits >2-fold higher binding affinity for HJ over other recombination/ replication intermediates. As demonstrated for other HJRs, MtRuvX failed to cleave static HJ and linear duplex DNA. The cleavage sites were mapped within the homologous core of a branch-migratable HJ. To identify catalytic residues in RuvX, we conducted mutational analysis of an acidic amino acid residue guided by the bioinformatics data. The product of MtRuvXD28N retained full HJ-binding activity, but showed extremely reduced HJ-specific endonuclease activity. Further biochemical characterization revealed that MtRuvX exists as a homodimer in solution. Notably, we found that disulfide-bond mediated intermolecular homodimerization is crucial for the ability of MtRuvX to cleave Holliday junctions, implicating that stable junction binding is necessary to promote branch migration and to create cleavable sites. Analysis of qPCR data suggested that the pattern of yqgF gene expression was similar to those of ruvC and recA genes following DNA damage. Together, these data indicate that ruvX expression is induced by DNA-damaging agents and that RuvX might be functionally involved in recombinational DNA repair in M. tuberculosis.
These findings are all consistent with the idea that RuvX might be the bona fide HJ resolvase in M. tuberculosis analogous to that of E. coli RuvC. More importantly, we provide the first detailed characterization of RuvX and present important insights into the mechanism of HJ resolution, which could be directly linked to the regulation of different DNA metabolic processes, including HR, DNA replication and DNA repair. Overall, this study opens a new avenue in the understanding of HR in this human pathogen, together with elucidation of the function of some of the uncharacterized genes may represent a novel set of recombination enzymes.
|
Page generated in 0.0576 seconds