Spelling suggestions: "subject:"recalage d'image een groupe"" "subject:"recalage d'image enn groupe""
1 |
Enregistrement d'Image Déformable en Groupe pour l'Estimation de Mouvement en Imagerie Médicale en 4D / Deformable Group-wise Image Registration for Motion Estimation in 4D Medical ImagingKornaropoulos, Evgenios 20 June 2017 (has links)
La présente thèse propose des méthodes pour l'estimation du mouvement des organes d'un patient autravers de l'imagerie tomographique. Le but est la correction du mouvement spatio-temporel sur les imagesmédicales tomographiques. En tant que paradigme expérimental, nous considérons le problème de l'estimation dumouvement dans l'imagerie IRM de diffusion, une modalité d'imagerie sensible à la diffusion des molécules d'eaudans le corps. Le but de ces travaux de thèse est l'évaluation des patients atteints de lymphome, car l'eau diffusedifféremment dans les tissus biologiques sains et dans les lésions. L'effet de la diffusion de l'eau peut être mieuxreprésenté par une image paramétrique, grâce au coefficient de diffusion apparente (image à ADC), créé sur la based'une série d'images DWI du même patient (séquence d'images 3D), acquises au moment de la numérisation. Unetelle image paramétrique a la possibilité de devenir un biomarqueur d'imagerie d’IRM et de fournir aux médecinsdes informations complémentaires concernantl'image de FDG-PET qui est la méthode d'imagerie de base pour lelymphome et qui montre la quantité de glucose métabolisée.Nos principales contributions sont au nombre de trois. Tout d'abord, nous proposons une méthode de recalaged'image déformable en groupe spécialement conçue pour la correction de mouvement dans l’IRM de diffusion, carelle est guidée par un modèle physiologique décrivant le processus de diffusion qui se déroule lors de l'acquisitionde l'image. Notre méthode détermine une image à ADC de plus grande précision en termes de représentation dugradient de la diffusion des molécules d'eau par rapport à l` image correspondante obtenue par pratique couranteou par d'autres méthodes de recalage d'image non basé sur un modèle. Deuxièmement, nous montrons qu'enimposant des contraintes spatiales sur le calcul de l'image à ADC, les tumeurs de l'image peuvent être encore mieuxcaractérisées en les classant dans les différentes catégories liées à la maladie. Troisièmement, nous montronsqu'une corrélation entre DWI et FDG-PET doit exister en examinant la corrélation entre les caractéristiquesstatistiques extraites par l'image à ADC lisse découlant de notre méthode du recalage d’image déformable et lesscores de recommandation sur la malignité des lésions, donnés par des experts basés sur une évaluation des imagesFDG-PET correspondantes du patient. / This doctoral thesis develops methods to estimate patient's motion, voluntary and involuntary (organs'motion), in order to correct for motion in spatiotemporal tomographic medical images. As an experimentalparadigm we consider the problem of motion estimation in Diffusion-Weighted Magnetic Resonance Imaging (DWI),an imaging modality sensitive to the diffusion of water molecules in the body. DWI is used for the evaluation oflymphoma patients, since water diffuses differently in healthy tissues and in lesions. The effect of water diffusioncan be better depicted through a parametric map, the so-called apparent diffusion coefficient (ADC map), createdbased on a series of DW images of the same patient (3D image sequence), acquired in time during scanning. Such aparametric map has the potentiality to become an imaging biomarker in DWI and provide physicians withcomplementary information to current state-of-the-art FDG-PET imaging reflecting quantitatively glycosemetaboslism.Our contributions are three fold. First, we propose a group-wise deformable image registration methodespecially designed for motion correction in DWI, as it is guided by a physiological model describing the diffusionprocess taking place during image acquisition. Our method derives an ADC map of higher accuracy in terms ofdepicting the gradient of the water molecules' diffusion in comparison to the corresponding map derived bycommon practice or by other model-free group-wise image registration methods. Second, we show that by imposingspatial constraints on the computation of the ADC map, the tumours in the image can be even better characterized interms of classifying them into the different types of the disease. Third, we show that a correlation between DWI andFDG-PET should exist by examining the correlation between statistical features extracted by the smooth ADC mapderived by our deformable registration method, and recommendation scores on the malignancy of the lesions, givenby experts based on an evaluation of the corresponding FDG-PET images of the patient.
|
Page generated in 0.0577 seconds