• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thromboxane receptor signaling and Rho GTPase activation on actin polymerization and contraction in hypoxic neonatal pulmonary arterial myocytes

Fediuk, Jena 01 January 2012 (has links)
INTRODUCTION: Persistent Pulmonary Hypertension of the Newborn (PPHN) is defined as the failure of normal circulatory relaxation in the lungs at birth. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial (PA) myocytes. Actin polymerization (APM), regulated by Rho GTPases, stabilizes force generation. We studied basal and thromboxane (TP)-induced APM and contraction in normoxic and hypoxic PA myocytes and rings. We also examined the downstream signaling pathways regulating hypoxia and TP-induced APM, and the role that actin plays in TP receptor internalization. METHODS: Smooth muscle myocytes from 2nd to 6th generation PAs of newborn piglets were cultured and exposed to hypoxia (10% O2) or normoxia (21% O2) for 72 hrs, then challenged with 10-6M TP-agonist U46619. APM was quantified by laser-scanning cytometry and stress fiber isolation. Downstream signaling pathways of TP receptor were studied by immunoprecipitation, Rhotekin-RBD and PAK-PBD affinity precipitation, Western blot, immunofluoresence and ELISA. Isometric force to serial concentrations of U46619 was measured in resistant PAs from PPHN and 3-day control swine. RESULTS: Hypoxia induced 2-fold APM via alpha- and gamma-actin isoforms, which contributed to increase U46619-induced contraction. Hypoxia decreased TP association with G12/13 in favor of Gαq. Basal RhoA and Cdc42 activity increased in hypoxia, while Rac activity decreased. U46619-challenge did not further alter RhoA activity in hypoxic cells, but increased Cdc42 and Rac activity. Hypoxia increased phosphorylation of LIMK and PAK, unaltered by U46619. Association of Cdc42 with N-WASp decreased in hypoxia, but increased after U46619 exposure. Jasplakinolide significantly stabilized gamma filaments, increasing force generation; cytochalasin D depolymerized all actin isoforms, which attenuated contractile force. Both actin-modifying agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. CONCLUSIONS: PA myocytes exhibit marked RhoA- and Rac-dependent APM in hypoxia. The additional APM response to U46619 challenge is independent of RhoA, but requires Cdc42 signaling. Hypoxia induces APM in PA myocytes, particularly causing an increase in filamentous alpha- and gamma-actin that contributes to increased U46619-induced force generation, a characteristic of PPHN. Dynamic actin also facilitates internalization of the TP receptor. Determining the mechanism that controls TP-mediated APM maybe beneficial as a potential target for PPHN.
2

Strukturně funkční studie N-koncové domény MP endocytického proteinu SGIP1 / Structure-function study of N-terminal domain of protein SGIP1

Dvořáková, Michaela January 2014 (has links)
The cells are communicating with each other using membrane-bound receptors. These receptors can recognize various ligands. Signalling via receptors allows the cell to control energy homeostasis, cell growth, differentiation, signalling and migration. Many of membrane-bound receptors are dynamically exchanged between plasma membrane and internal endosomal compartments by exo- and endocytosis. The most studied mechanism of endocytosis is clathrin-mediated endocytosis. There are many proteins involved in the sophisticated endocytic machinery. So called adaptor proteins allow and/or facilitate proper selection of cargo, which should be internalized. Some of them help to curve the membrane and form a vesicle, some of them may have opposite effect. "Src Homology 3-Domain Growth Factor Receptor-Bound 2-Like (Endophilin) Interacting Protein 1" (SGIP1) might fall in this category. This protein influences endocannabinoid signalling probably via its effect on cannabinoid receptors endocytosis. SGIP1 was recently identified as a gene involved in regulation of energy metabolism with overexpression leading to obesity. The aim of this work is structural and functional analysis of SGIP1 membrane phospholipid-binding domain (MP-domain). This domain shares no sequence homology with any of known proteins. In this...
3

Targeting of peptide-binding receptors on cancer cells with peptide-drug conjugates

Worm, Dennis J., Els-Heindl, Sylvia, Beck-Sickinger, Annette G. 05 June 2023 (has links)
Specifically addressing cell surface molecules on cancer cells facilitates targeted cancer therapies that offer the potential to selectively destroy malignant cells, while sparing healthy tissue. Thus, undesired side-effects in tumor patients are highly reduced. Peptide-binding receptors are frequently overexpressed on cancer cells and therefore promising targets for selective tumor therapy. In this review, peptide-binding receptors for anti-cancer drug delivery are summarized with a focus on peptide ligands as delivery agents. In the first part, some of the most studied peptide-binding receptors are presented, and the ghrelin receptor and the Y1 receptor are introduced as more recent targets for cancer therapy. Furthermore, nonpeptidic small molecules for receptor targeting on cancer cells are outlined. In the second part, peptide conjugates for the delivery of therapeutic cargos in cancer therapy are described. The essential properties of receptor-targeting peptides are specified, and recent developments in the fields of classical peptide-drug conjugates with toxic agents, radiolabeled peptides for radionuclide therapy, and boronated peptides for boron neutron capture therapy are presented.
4

Contribuição da sinalização dependente de beta-arrestinas, via receptor de angiotensina II do tipo 1, na hipertrofia cardiomiocítica induzida por T3. / Contribution of beta-arrestin signaling mediated by angiotensin II receptor type 1 in cardiomyocyte hypertrophy induced by T3.

Lino, Caroline Antunes 24 September 2018 (has links)
Níveis elevados de hormônios tireoidianos (HTs) são comumente associados à ativação do sistema renina angiotensina local e ao desenvolvimento da hipertrofia cardíaca. O envolvimento do receptor de angiotensina II tipo 1 (AT1R) nos efeitos hipertróficos dos HTs fora descrito previamente. No entanto, os mecanismos subjacentes a essa interação ainda são desconhecidos. O AT1R pertence à família dos receptores acoplados à proteína G e, portanto, promove a transdução de sinal por mecanismos dependentes e independentes de proteína G. Recentemente, a sinalização dependente de beta-arrestinas (independente de proteína G) tem sido descrita por contribuir com a resposta hipertrófica em diferentes modelos experimentais. Assim, no presente estudo investigou-se o envolvimento da sinalização dependente de beta-arrestinas nos efeitos hipertróficos dos HTs, mediados pelo AT1R, bem como a participação de ERK½ nesse processo. Culturas primárias de cardiomiócitos foram estimuladas com T3 (triiodotironina; 15nM) para indução da hipertrofia. O tratamento dos cardiomiócitos com T3 por tempos rápidos (5-30 min) resultou na ativação transiente de ERK½, a qual foi parcialmente atenuada quando da administração de Losartan (1µM), antagonista do AT1R. A contribuição de ERK½ na hipertrofia dos cardiomiócitos foi verificada através do uso de PD98059 (20µM), inibidor de MEK½, o qual preveniu a transcrição de marcadores hipertróficos. Ensaios de imunoprecipitação revelaram o aumento da interação entre AT1R e beta-arrestina 2 sob estímulo do T3, sugerindo o recrutamento de beta-arrestina 2 e, possível, internalização do AT1R. Através de ensaios de imunofluorescência e fracionamento subcelular, foi demonstrado que o T3 estimula a translocação do AT1R, amentando sua expressão no núcleo dos cardiomiócitos. Além disso, tanto a ativação de ERK½ quanto a hipertrofia cardiomiocítica mostraram-se sensíveis à inibição da endocitose, a qual foi avaliada através de Concanavalina A (0,5µg/ml). Ensaios de silenciamento gênico por RNA de interferência foram eficientes em demonstrar o envolvimento de beta-arrestina 2 na ativação de ERK½ e na hipertrofia cardiomiocítica induzida por T3. Desta forma, os resultados evidenciam o envolvimento da sinalização dependente de beta-arrestina 2 na ativação de ERK½, através do AT1R, a qual contribui com a hipertrofia cardiomiocítica promovida pelo T3. / Elevated levels of thyroid hormones (THs) are commonly associated with activation of the local renin angiotensin system and the development of cardiac hypertrophy. The involvement of the angiotensin II receptor type 1 (AT1R) in the hypertrophic effects of the THs was previously described. However, the mechanisms underlying this interaction are still unknown. AT1R belongs to the G-protein coupled receptor family and promotes its signal transduction by G-protein dependent and independent mechanisms. Recently, beta-arrestin signaling (G-protein independent) has been described as contributing to the hypertrophic response in different experimental models. Thus, the present study investigated the involvement of beta-arrestin signaling in the hypertrophic effects of THs mediated by AT1R, as well as the participation of ERK½ in this process. Primary cardiomyocytes cultures were stimulated with T3 (triiodothyronine; 15nM) for the induction of hypertrophy. Cardiomyocytes acutely treated with T3 (5-30 min) resulted in transient activation of ERK½, which was partially attenuated upon Losartan (1µM) administration, an AT1R antagonist. The contribution of ERK½ to cardiomyocyte hypertrophy was verified by using PD98059 (20µM), a MEK½ inhibitor, which prevented the transcription of hypertrophic markers. Immunoprecipitation assays revealed increased interaction between AT1R and beta-arrestin 2 under T3 stimulation, suggesting the recruitment of beta-arrestin 2 and, possibly, the internalization of AT1R. Through immunofluorescence and subcellular fractionation assays, T3 has been shown to stimulate AT1R translocation, enhancing its expression in the cardiomyocyte nucleus. In addition, both ERK½ activation and cardiomyocyte hypertrophy were sensitive to the inhibition of endocytosis, which was assessed by Concanavalin A (0.5µg/ml). Interfering RNA assays were efficient in demonstrating the involvement of beta-arrestin 2 in ERK½ activation and in T3-induced cardiomyocyte hypertrophy. Therefore, the results evidenced the involvement of beta-arrestin-2-dependent signaling in the activation of ERK½, through the AT1R, which contributes to the cardiomyocyte hypertrophy promoted by T3.

Page generated in 0.3959 seconds