• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies into the role of members of the mitogen-activated protein kinase family and their upstream regulatory pathways in interleukin-1 signal transduction

Parry, Joanne Rachel January 2000 (has links)
No description available.
2

The balancing effect between MAPK and NFκB pathways for the transcriptional regulation of Toll-like receptors

Hong, Xinyang January 2016 (has links)
Toll-like receptors (TLR) are a family of pattern recognition receptors crucial for pathogen pattern recognition. Upon activation, TLRs induce innate immune responses such as cytokine production. However irregular TLR activities can provide fatal, hence fine tuning of the TLR induced responses are necessary. The TLR mediated immune responses are controlled by the positive/negative regulation of TLR signalling pathways, relocation of TLR proteins and modulation of TLR transcription. Systematic analyses of the agonist-induced transcriptional changes of TLRs were shown for the first time in my thesis. In my experiments, I have shown that each agonist induced a unique pattern of TLR transcription. Following PAM stimulation, mRNA levels of the cognate TLR1/2 increased whereas mRNA levels of the cross-regulating TLR4, 7/8/9 reduced in both cell lines and splenic macrophages from different mice strains. Through investigation of the signalling pathways responsible for mediating such TLR transcriptional changes, I then discovered the balancing effect between NFÎoB and MAPK signalling pathways. PAM induced TLR transcriptional changes were controlled by the additive and/or antagonistic interference between MAPK signalling cascades, ERK, JNK, P38 and NFÎoB signalling pathways. This was the first time that signalling synergy between MAPK and NFÎoB pathways were shown. Furthermore, PAM induced transcription of TLR1 and TLR8 may be partially regulated by the indirect feedback mediated by protein production. Importantly, the maintenance of the basal TLR mRNA expression also required activation of both MAPK and NFÎoB signalling pathways. In addition, signalling control for TLR transcription induced by different agonists (PAM vs. LPS) or in different species (chicken vs. mice) was compared. LPS induced transcriptional changes of the cross-regulating TLR1/2 and 3 but not the cognate TLR4 in RAW cells. The LPS induced TLR transcriptional changes required activation of a combination of MAPK and NFÎoB signalling pathways which shared both similarities and differences to the PAM induced signalling activation. In chicken, PAM induced more potent signalling activation, regulating the TLR transcriptional changes at a lower concentration than in mice. Overall, this thesis demonstrates that the transcriptional regulation of TLRs is complex, mediated by the coordination between MAPK and NFÎoB signalling pathways. These studies have significant implications in providing detailed insight of TLR transcriptional regulation which plays an important role in the regulation of TLR mediated innate immune responses. Please watch the following videos that I made for: A short introduction about TLR regulation - https://youtu.be/LTDdEZ3S97o A short explanation about TLR signalling - https://youtu.be/51IY5XhdJR8.
3

Early growth response genes -2 and -3 are essential for optimal immune responses

Ghaffari, Emma Louise Marie January 2013 (has links)
Early Growth Response Genes (EGR) is a family of four transcription factors containing a unique zinc finger domain. EGR-2 and EGR-3 are important for hindbrain development and myelination. These transcription factors are also necessary for lymphocyte function however, the mechanisms are still unclear. Previous findings have shown that EGR-2cKO mice develop lupus-like autoimmune disease with high levels of pro-inflammatory cytokines despite showing normal T and B cell proliferation after mitogenic stimulation. Therefore we established the CD2-EGR-2-/-EGR-3-/- mouse model to explore the phenotype, susceptibility to autoimmune disease and relevant lymphocyte function. We discovered that CD2-EGR-2-/-EGR-3-/- mice developed severe systemic autoimmune disease and expressed high levels of inflammatory cytokines. More importantly we discovered a novel finding that CD2-EGR-2-/-EGR-3-/- T and B cells had impaired cell proliferation after mitogenic stimulation. Further investigations revealed that the molecular mechanism defected in the T cell receptor signalling pathway is due to a dysfunction in Activator Protein-1 (AP-1). AP-1 is a heterodimeric protein composed of AP-1 family members including Jun, Atf and Fos. Our data shows that EGR-2 and EGR-3 directly bind with the Atf family member Batf, which prevents Batf’s inhibitory function on AP-1 activation. This research demonstrates that EGR-2 and EGR-3 intrinsically regulate chronic inflammation and also positively regulate antigen receptor activation. In conclusion EGR-2 and EGR-3 are essential for providing optimal immune responses, whilst limiting inflammatory immunopathology. We propose that this new model could be used for studying autoimmune disease.
4

Effect of the omega-3 polyunsaturated fatty acid eicosapentaenoic acid on E-type prostaglandin synthesis and EP4 receptor signalling in human colorectal cancer cells.

Hawcroft, Gillian, Loadman, Paul M., Belluzzi, Andrea, Hull, Mark A. January 2010 (has links)
The omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA), in the free fatty acid (FFA) form, has been demonstrated to reduce adenoma number and size in patients with familial adenomatous polyposis. However, the mechanistic basis of the antineoplastic activity of EPA in the colorectum remains unclear. We tested the hypothesis that EPA-FFA negatively modulates synthesis of and signaling by prostaglandin (PG) E(2) in human colorectal cancer (CRC) cells. EPA-FFA induced apoptosis of cyclooxygenase (COX)-2-positive human HCA-7 CRC cells in vitro. EPA-FFA in cell culture medium was incorporated rapidly into phospholipid membranes of HCA-7 human CRC cells and acted as a substrate for COX-2, leading to reduced synthesis of PGE(2) and generation of PGE(3). Alone, PGE(3) bound and activated the PGE(2) EP4 receptor but with reduced affinity and efficacy compared with its "natural" ligand PGE(2). However, in the presence of PGE(2), PGE(3) acted as an antagonist of EP4 receptor-dependent 3',5' cyclic adenosine monophosphate induction in naturally EP4 receptor-positive LoVo human CRC cells and of resistance to apoptosis in HT-29-EP4 human CRC cells overexpressing the EP4 receptor. We conclude that EPA-FFA drives a COX-2-dependent "PGE(2)-to-PGE(3) switch" in human CRC cells and that PGE(3) acts as a partial agonist at the PGE(2) EP4 receptor.
5

Mechanismus regulace aktivace ligandů EGF receptoru prostřednictvím intramembránové pseudoproteasy iRhom a metaloproteasy ADAM17 / Mechanism of regulation of EGFR receptor ligand activation via the intramembrane pseudoprotease iRhom and cell surface metalloprotease ADAM17

Trávníčková, Květa January 2019 (has links)
Signalling through the EGF receptor is subject to a complex and multilayered regulation. One such mode of regulation is through control of ligand production which plays an important role in fine- tuning EGF receptor activation. In mammals, the production of soluble, biologically active forms of EGF receptor ligands relies on ADAM metalloproteases, predominantly ADAM10 and ADAM17. Recently, a pseudoprotease from the rhomboid-like family of intramembrane proteases, iRhom, emerged as a key positive regulator of ADAM17. However, Drosophila iRhom has also been implicated in the negative regulation of EGF receptor signalling by promoting the degradation of precursors of its ligands. Cell culture based assays suggest that mammalian iRhoms might also be involved in a similar process. In this thesis, the effect of mammalian iRhom overexpression on the levels of EGF receptor ligands has been investigated. Contrary to previous findings, the data presented in this thesis suggest that the observed effect might not be entirely iRhom specific, for the inactive mutants of rhomboid proteases also diminish the levels of EGF receptor ligands. Nor do we find the effect to be specific to EGF receptor ligands, as unrelated transmembrane proteins were also depleted by iRhom overexpression. The coexpression of ADAM17 was...
6

Mechanismus regulace aktivace ligandů EGF receptoru prostřednictvím intramembránové pseudoproteasy iRhom a metaloproteasy ADAM17 / Mechanism of regulation of EGFR receptor ligand activation via the intramembrane pseudoprotease iRhom and cell surface metalloprotease ADAM17

Trávníčková, Květa January 2019 (has links)
Signalling through the EGF receptor is subject to a complex and multilayered regulation. One such mode of regulation is through control of ligand production which plays an important role in fine- tuning EGF receptor activation. In mammals, the production of soluble, biologically active forms of EGF receptor ligands relies on ADAM metalloproteases, predominantly ADAM10 and ADAM17. Recently, a pseudoprotease from the rhomboid-like family of intramembrane proteases, iRhom, emerged as a key positive regulator of ADAM17. However, Drosophila iRhom has also been implicated in the negative regulation of EGF receptor signalling by promoting the degradation of precursors of its ligands. Cell culture based assays suggest that mammalian iRhoms might also be involved in a similar process. In this thesis, the effect of mammalian iRhom overexpression on the levels of EGF receptor ligands has been investigated. Contrary to previous findings, the data presented in this thesis suggest that the observed effect might not be entirely iRhom specific, for the inactive mutants of rhomboid proteases also diminish the levels of EGF receptor ligands. Nor do we find the effect to be specific to EGF receptor ligands, as unrelated transmembrane proteins were also depleted by iRhom overexpression. The coexpression of ADAM17 was...
7

Differential Regulation of Lipopolysaccharide and Gram-Positive Bacteria Induced Cytokine and Chemokine Production in Macrophages by Gα<sub>I</sub> Proteins

Fan, Hongkuan, Williams, David L., Zingarelli, Basilia, Breuel, Kevin F., Teti, Giuseppe, Tempel, George E., Spicher, Karsten, Boulay, Guylain, Birnbaumer, Lutz, Halushka, Perry V., Cook, James A. 01 September 2007 (has links)
Heterotrimeric Gi proteins play a role in signalling activated by lipopolysaccharide (LPS), Staphylococcus aureus (SA) and group B streptococci (GBS), leading to production of inflammatory mediators. We hypothesized that genetic deletion of Gi proteins would alter cytokine and chemokine production induced by LPS, SA and GBS stimulation. LPS-induced, heat-killed SA-induced and heat-killed GBS-induced cytokine and chemokine production in peritoneal macrophages from wild-type (WT), Gαi2-/- or Gαi1/3-/- mice were investigated. LPS induced production of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-10 and interferon-γ-inducible protein-10 (IP-10); SA induced TNF-α, and IL-1β production; and GBS induced TNF-α, IL-6, IL-1β, macrophage inflammatory protein-1α (MIP-1α) and keratinocyte chemoattract (KC) production were all decreased (P < 0.05) in Gαi2-/- or Gαi1/3-/- mice compared with WT mice. In contrast to the role of Gi proteins as a positive regulator of mediators, LPS-induced production of MIP-1α and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in macrophages from Gαi1/3-/- mice, and SA-induced MIP-1α production was increased in both groups of Gαi protein-depleted mice. LPS-induced production of KC and IL-1β, SA-induced production of GM-CSF, KC and IP-10, and GBS-induced production of IL-10, GM-CSF and IP-10 were unchanged in macrophages from Gαi2-/- or Gαi1/3-/- mice compared with WT mice. These data suggest that Gi2 and Gi1/3 proteins are both involved and differentially regulate murine inflammatory cytokine and chemokine production in response to both LPS and Gram-positive microbial stimuli.

Page generated in 0.1003 seconds