Spelling suggestions: "subject:"deceptors, G-Protein-Coupled--physiology"" "subject:"geceptors, G-Protein-Coupled--physiology""
1 |
The role of growth hormone secretagogue receptor (GHSR) in apoptosis.January 2005 (has links)
Lau Pui Ngan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 171-181). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iv / Acknowledgement --- p.vii / Abbreviations --- p.viii / Publications Based on work in this thesis --- p.xii / Chapter Chapter 1 --- Introduction and project overview --- p.1 / Chapter 1.1 --- Ghrelin structure and its synthesis --- p.3 / Chapter 1.2 --- Types of growth hormone secretagogues (GHSs) --- p.6 / Chapter 1.3 --- Characterization of GHS-R --- p.7 / Chapter 1.3.1 --- Cloning of GHS-Rla and GHS-Rlb --- p.7 / Chapter 1.3.1.1 --- GHS-R subtypes --- p.7 / Chapter 1.3.1.2 --- Properties of GHS-R subtypes --- p.7 / Chapter 1.3.1.3 --- Evidence of non-GHS-Rla stimulated by ghrelin and GHSs --- p.9 / Chapter 1.3.1.4 --- Distribution of GHS-R --- p.10 / Chapter 1.3.2 --- Signal transduction pathways of GHS-R --- p.11 / Chapter 1.3.3 --- Comparison between human and seabream GHS-R --- p.12 / Chapter 1.4 --- Is adenosine a partial agonist at GHS-Rla? --- p.15 / Chapter 1.5 --- Physiological effects of ghrelin --- p.17 / Chapter 1.6 --- Apoptosis --- p.19 / Chapter 1.6.1 --- Introduction --- p.19 / Chapter 1.6.2 --- Apoptosis versus necrosis --- p.19 / Chapter 1.6.3 --- Mechanisms of apoptosis --- p.20 / Chapter 1.6.4 --- Methods to study apoptosis --- p.23 / Chapter 1.6.5 --- Different types of apoptotic inducers --- p.24 / Chapter 1.7 --- Apoptotic and anti-apoptotic pathways regulated by GPCRs --- p.27 / Chapter 1.7.1 --- Bcl-2 family pathway --- p.27 / Chapter 1.7.2 --- Caspase pathway --- p.27 / Chapter 1.7.3 --- ERK pathway --- p.28 / Chapter 1.7.4 --- PI3K/Akt pathway --- p.29 / Chapter Chapter 2 --- Materials and solutions --- p.31 / Chapter 2.1 --- Materials --- p.31 / Chapter 2.2 --- "Culture medium, buffer and solutions" --- p.37 / Chapter 2.2.1 --- Culture medium --- p.37 / Chapter 2.2.2 --- Buffers --- p.37 / Chapter 2.2.3 --- Solutions --- p.38 / Chapter Chapter 3 --- Methods --- p.41 / Chapter 3.1 --- Maintenance of cell lines --- p.41 / Chapter 3.1.1 --- Human Embryonic kidney (HEK293) cells --- p.41 / Chapter 3.1.2 --- HEK293 cells stably expressing black seabream growth hormone secretagogues receptors (HEK-sbGHS-Rla and HEK-sbGHS-Rlb) --- p.41 / Chapter 3.2 --- Preparation of plasmid DNA --- p.42 / Chapter 3.2.1 --- Preparation of competent E. coli --- p.42 / Chapter 3.2.2 --- Transformation of DNA into competent cells --- p.42 / Chapter 3.2.3 --- Small-scale and large-scale plasmid DNA preparation --- p.43 / Chapter 3.2.4 --- Confirmation of the purity and the identity of the plasmid DNA --- p.43 / Chapter 3.3 --- Transient transfection of mammalian cells --- p.45 / Chapter 3.4 --- Development of stable cell lines --- p.46 / Chapter 3.4.1 --- Determination of the optimum concentration of each antibiotic used in selection of clones --- p.46 / Chapter 3.4.2 --- Development of monoclonal stable cell line --- p.46 / Chapter 3.4.3 --- Confirmation the expression of 2myc-hGHS-Rla and myc-hGHS-Rlb --- p.48 / Chapter 3.5 --- Measurement of phospbolipase C activity --- p.49 / Chapter 3.5.1 --- Introduction --- p.49 / Chapter 3.5.2 --- Preparation of columns --- p.49 / Chapter 3.5.3 --- [3 H]-inositol phosphate assay --- p.49 / Chapter 3.5.4 --- Measurement of [3H]-inositol phosphates production --- p.50 / Chapter 3.5.5 --- Data analysis --- p.50 / Chapter 3.6 --- Determination of transient transfection efficiency --- p.51 / Chapter 3.7 --- Reverse-transcription polymerase chain reaction (RT-PCR) --- p.52 / Chapter 3.7.1 --- RNA extraction and first strand cDNA production --- p.52 / Chapter 3.7.2 --- PCR and visualization of amplicons --- p.52 / Chapter 3.7.3 --- Real-time PCR --- p.59 / Chapter 3.7.3.1 --- Construction of standard curve --- p.60 / Chapter 3.7.3.2 --- Data analysis --- p.60 / Chapter 3.8 --- Measurement of caspase-3 activity --- p.65 / Chapter 3.8.1 --- Determination of caspase-3 activity using colorimetric assay --- p.65 / Chapter 3.8.1.1 --- Introduction --- p.65 / Chapter 3.8.1.2 --- Induction of apoptosis --- p.65 / Chapter 3.8.1.3 --- Preparation of cell lysates --- p.65 / Chapter 3.8.1.4 --- Quantification of caspase-3 activity by measuring pNA absorbance --- p.66 / Chapter 3.8.1.5 --- Data analysis --- p.67 / Chapter 3.8.2 --- Determination of caspase-3 activity using bioluminescence resonance energy transfer (BRET2) assay --- p.67 / Chapter 3.8.2.1 --- Introduction --- p.67 / Chapter 3.8.2.2 --- Quantification of caspase-3 activity using BRET2 assay --- p.68 / Chapter 3.8.2.3 --- Data analysis --- p.69 / Chapter 3.8.3 --- Determination of caspase-3 activity using fluorescence resonance energy transfer (FERT) assay --- p.70 / Chapter 3.8.3.1 --- Introduction --- p.70 / Chapter 3.8.3.2 --- Quantification of caspase-3 activity using FRET assay --- p.70 / Chapter 3.8.3.3 --- Data analysis --- p.71 / Chapter Chapter 4 --- Results --- p.72 / Chapter 4.1 --- Characterization of GHS-R --- p.72 / Chapter 4.1.1 --- Properties of GHS-Rla --- p.72 / Chapter 4.1.1.1 --- Constitutively active receptor --- p.72 / Chapter 4.1.1.2 --- Characterization of epitope-tagged hGHS-Rla --- p.73 / Chapter 4.1.2 --- Properties of GHS-Rlb --- p.75 / Chapter 4.1.3 --- Conclusions --- p.75 / Chapter 4.2 --- Effect of co-transfection of HEK293 cells --- p.85 / Chapter 4.2.1 --- Effect of balancing DNA concentrations transfected into HEK293 cells --- p.85 / Chapter 4.2.2 --- Effect of balancing DNA concentration using another Gq-coupled receptor --- p.87 / Chapter 4.2.3 --- Effect of Gi- and Gs-coupled receptor on GHS-Rla signaling --- p.88 / Chapter 4.2.4 --- Potentiating effect of co-transfection appeared using different transfection reagents --- p.88 / Chapter 4.2.5 --- Co-transfection improves transfection efficiency --- p.89 / Chapter 4.2.6 --- Discussions --- p.91 / Chapter 4.3 --- Development of cell lines stably expressing hGHS-Rla or hGHS-Rlb --- p.102 / Chapter 4.3.1 --- Advantages of using a monoclonal cell line --- p.102 / Chapter 4.3.2 --- Sensitivity of HEK293 cells to antibiotics --- p.102 / Chapter 4.3.3 --- Production of polyclonal stable cell line --- p.103 / Chapter 4.3.4 --- Monoclonal stable cell line selection --- p.104 / Chapter 4.3.5 --- Discussions --- p.105 / Chapter 4.4 --- Effect of adenosine on GHS-Rla signaling --- p.111 / Chapter 4.4.1 --- Adenosine acts as partial agonist --- p.111 / Chapter 4.4.2 --- Effect of substance P analog on adenosine-mediated GHS-Rla signaling --- p.112 / Chapter 4.4.3 --- Effect of adenosine deaminase (ADA) on adenosine- and ghrelin-stimulated GHS-Rla signaling --- p.113 / Chapter 4.4.4 --- Specificity of ADA --- p.115 / Chapter 4.4.5 --- Conclusions --- p.116 / Chapter 4.5 --- Role of GHS-R in apoptosis --- p.124 / Chapter 4.5.1 --- Different methods to measure caspase-3 activity --- p.124 / Chapter 4.5.1.1 --- Colorimetric assay --- p.124 / Chapter 4.5.1.1.1 --- Time course for staurosporine and etoposide in HEK293 cells --- p.125 / Chapter 4.5.1.1.2 --- Effect of 2myc-hGHS-Rla on staurosporine- and etoposide-induced caspase-3 activity --- p.127 / Chapter 4.5.1.1.3 --- Time course for staurosporine and etoposide in sbGHS-R monoclonal stable cell line --- p.128 / Chapter 4.5.1.1.4 --- Effect of sbGHS-Rs on staurosporine- and etoposide- induced caspase-3 activityin HEK 293 cells --- p.129 / Chapter 4.5.1.1.5 --- Effect of sbGHS-Rs on staurosporine- induced caspase-3 activity in sbGHS-R monoclonal stable cell line --- p.130 / Chapter 4.5.1.1.6 --- Differences between epitope-tagged and non-tagged sbGHS-Rs in staurosporine- induced caspase-3 activity --- p.131 / Chapter 4.5.1.1.7 --- The role of epitope-tagged sbGHS-Rlbin staurosporine-induced caspase-3 activity --- p.132 / Chapter 4.5.1.1.8 --- Effect of staurosporine and etoposide on GHS-Rla signaling --- p.133 / Chapter 4.5.1.2 --- BRET2 assay --- p.135 / Chapter 4.5.1.3 --- FRET assay --- p.136 / Chapter 4.5.1.4 --- Conclusions --- p.136 / Chapter 4.6 --- Determination of GHS-R amount in terms of mRNA --- p.155 / Chapter 4.6.1 --- Determination of GHS-R amount in stable cell lines --- p.155 / Chapter 4.6.2 --- Transfected DNA amount match with stable cell lines --- p.155 / Chapter Chapter 5 --- "Discussion, Conclusions and Future Plan" --- p.159 / Chapter 5.1 --- General Discussion and Conclusions --- p.159 / Chapter 5.2 --- Future Plan and Experimental Design --- p.168 / References --- p.171
|
2 |
Characterization of an orphan G protein-coupled receptor mas-induced tumor formation. / CUHK electronic theses & dissertations collectionJanuary 2005 (has links)
Ectopic and over-expression of G protein-coupled receptor (GPCR) have been reported to induce tumor formation. Mas protein is a member of GPCR family and was originally isolated from human epidermoid carcinoma. It was demonstrated that mas mRNA was abundantly expressed in human and rat brains by in situ hybridization and RNase protection assays. However, cellular mechanism that leads to such tumorigenic transformation is still an open question. / In order to identify the cellular mechanism of mas-induced tumor formation, a full-length mas cDNA was cloned into a mammalian expression vector pFRSV with dihydrofolate reductase gene as a selection marker. Detailed analyses of mas-transfected cell lines by Southern blot, Northern blot and tumorigenicity assay indicated that tumorigenicity of mas-transfected cells depended on the sites of chromosomal integration and the levels of mas expression. These results suggest that overexpression of mas is not sufficient to induce tumor formation. In line with the ability of mas-transfected cells Mc0M80 to form solid tumor in nude mice, MTT cell proliferation assay indicated that the mas-transfected cells Mc0M80 proliferated faster than vector-transfected cells. Moreover, mas-transfected cells Mc0M80 exhibited significantly increased anchorage-independent growth. Furthermore, mas-transfected cells Mc0M80 showed higher percentage cells in G2/M phase but lower in S-phase in comparison with vector-transfected cells. / Interestingly, Southern blot analysis of individual xenografted tumor tissue indicated that tumor was composed of cells not only derived from injected mas-transfected CHO cells but also cells from mouse tissues. The presence of mouse stromal cells in the tumor was confirmed by immunohistochemistry and in situ hybridization. Previously our laboratory had identified some up- and down-regulated genes in mas-transfected cells by fluorescent differential display (FluoroDD). Northern blot showed that these differential expressed genes were up- or down-regulated in mas-transfected cells and tumor samples, which might play an important role in cancerous growth. / Taken together, these results suggest that over-expression of GPCR mas up-regulated tumor-related genes, resulting in promoting excessive cell growth and tumorigenic transformation. In addition, when the tumor mass formed they secreted some growth factor(s) which altered the migration of mouse stromal cells into tumor mass. The interactions of transformed cells and stromal cells further aggravate the tumorigenicity process. / To complement our fluorescent differential display study and to compare changes of gene expression when transformed cells were exposed to the microenvironment in nude mice, protein expression profiles of mas over-expressing cells as well as tumor tissues were analyzed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry. The 2D-PAGE analysis showed that a similar but distinct protein expression profiles in mas-transfected cells and in mas-induced tumor. Mass spectrometry analysis identified several cancerous growth-related proteins and they are involved in processes such as cell signaling, energy metabolism, transcription and translation and cytoskeleton organization. / Lin Wenzhen. / "December 2005." / Adviser: Cheung Wing Tai. / Source: Dissertation Abstracts International, Volume: 67-11, Section: B, page: 6381. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 222-240). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
3 |
Uncovering the mechanisms of trans-arachidonic acids : function and implications for cerebral ischemia and beyondKooli, Amna. January 2008 (has links)
Cerebral ischemia is the principal cause of morbidity and mortality worldwide. In addition to neuronal loss associated with hypoxic-ischemic damage, cerebral ischemia is characterized by a neuromicrovascular injury. Nitrative stress and lipid peroxidation increase in hypoxic-ischemic damages and play an essential role in neuromicrovascular injury leading to cerebral ischemia. We hypothesized that newly described lipid peroxidation products, termed trans-arachidonic acids (TAA), could be implicated in the pathogenesis of hypoxia-ischemia by affecting the cerebral vasomotricity and microvascular integrity. / The effects of TAA on neuromicrovascular tone were tested ex vivo by monitoring the changes in vascular diameter of rat cerebral pial microvessels. Four isomers of TAA, namely 5 E-AA, 8E-AA, IIE-AA and 14 E-AA induced an endothelium-dependent vasorelaxation. Possible mechanisms involved in TAA-induced vasorelaxation were thoroughly investigated. Collectively, data enclosed revealed that TAA induce cerebral vasorelaxation through the interactive activation of BKCa channels with heme oxygenase-2. This interaction leads to generation of carbon monoxide which in turn activates soluble guanylate cyclase and triggers vasorelaxation. / Chronic effects of TAA on microvascular integrity were examined by generating a unilateral hypoxic-ischemic (HI) model of cerebral ischemia on newborn rat pups. Our HI model showed microvascular degeneration as early as 24h post-HI, preceded by an increase in cerebral TAA levels. HI-induced microvascular lesions were dependent on nitric oxide synthase activation and ensued TAA formation. Although the molecular mechanisms leading to TAA-induced microvascular degeneration were, in part uncovered for the retina, the primary site of action of TAA remains unknown. We demonstrated that TAA binds and activates GPR40 receptor, a newly described free fatty acid receptor. Importantly, GPR40 receptor knock-out prevents TAA-induced reduction in cerebral microvascular density and limits HI-induced brain infarct.
|
4 |
Uncovering the mechanisms of trans-arachidonic acids : function and implications for cerebral ischemia and beyondKooli, Amna. January 2008 (has links)
No description available.
|
Page generated in 0.054 seconds