• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 20
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the role of CD137 (4-1BB) costimulation in human CD8⁺ T cell responses /

Berger, DeAnna L. January 2004 (has links)
Thesis (M.S.)--University of Missouri--Columbia, 2004. / "May 2004." Typescript. Includes bibliographical references (leaves 97-111). Also issued on the Internet.
2

Effects of tumor necrosis factor-alpha on cell cycle regulatory genes expression in C6 Glioma cells.

January 2002 (has links)
by Wong Kin Ling. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 348-373). / Abstracts in English and Chinese. / Abstract --- p.ii / 撮要 --- p.iv / Acknowledgements --- p.vi / Table of Contents --- p.vii / List of Abbreviations --- p.xviii / List of Tables --- p.xxi / List of Figures --- p.xxii / Chapter CHAPTER 1. --- INTRODUCTION / Chapter 1.1. --- Events happened in brain injury --- p.1 / Chapter 1.2. --- An alternate approach based on neuronal regeneration --- p.3 / Chapter 1.3. --- Fate of astrocytes after brain injury --- p.4 / Chapter 1.3.1. --- General information of astrocytes --- p.4 / Chapter 1.3.2. --- Functions of astrocytes --- p.5 / Chapter 1.4. --- Factors relate to astrocytes proliferation --- p.7 / Chapter 1.4.1. --- TNF-α --- p.8 / Chapter 1.4.2. --- β adrenergic mechanism and astrocyte proliferation --- p.11 / Chapter 1.5. --- Cell cycle-related proteins --- p.13 / Chapter 1.5.1. --- Maturation promoting factor (MPF) --- p.15 / Chapter 1.5.2. --- Early G1 phase --- p.16 / Chapter 1.5.3. --- Retinoblastoma protein (pRb) --- p.18 / Chapter 1.5.4. --- Cyclin-dependent kinase (cdk) activating kinase (Cak) --- p.19 / Chapter 1.5.5. --- "Cyclin, cdks, cki" --- p.20 / Chapter 1.5.5.1. --- Cyclins --- p.20 / Chapter 1.5.5.1.1. --- Cyclin D --- p.21 / Chapter 1.5.5.1.2. --- Cyclin E --- p.22 / Chapter 1.5.5.1.3. --- Cyclin A --- p.23 / Chapter 1.5.5.1.4. --- Cyclin B --- p.23 / Chapter 1.5.5.2. --- Cyclin-dependent kinases (cdks) --- p.24 / Chapter 1.5.5.3. --- Cyclin-dependent kinase inhibitor (cki) --- p.24 / Chapter 1.5.5.3.1. --- INK4 proteins (inhibitors of cdk-4 and cdk-6) --- p.25 / Chapter 1.5.5.3.2. --- p21 family proteins --- p.25 / Chapter 1.5.5.3.2.1. --- p21 --- p.25 / Chapter 1.5.5.3.2.2. --- p27 --- p.25 / Chapter 1.6. --- Apoptosis related proteins --- p.26 / Chapter 1.6.1. --- bcl-2 family --- p.26 / Chapter 1.6.1.1. --- bcl-2 --- p.26 / Chapter 1.6.1.2. --- bcl-x --- p.27 / Chapter 1.6.1.3. --- bcl-xα --- p.27 / Chapter 1.6.1.4. --- bcl-w --- p.28 / Chapter 1.6.1.5. --- Myeloid cell leukemia factor 1 (Mcl-1) --- p.28 / Chapter 1.7. --- C6 glioma cell line --- p.28 / Chapter 1.8. --- Aim of this project --- p.30 / Chapter CHAPTER 2. --- MATERIALS & METHODS / Chapter 2.1. --- Materials / Chapter 2.1.1. --- Rat C6 glioma cell line --- p.32 / Chapter 2.1.2. --- Cell culture materials preparation / Chapter 2.1.2.1. --- Complete Dulbecco's Modified Medium (cDMEM) --- p.32 / Chapter 2.1.2.2. --- Serum-free Dulbecco's Modified Medium (sDMEM) --- p.33 / Chapter 2.1.2.3. --- Phosphate buffered saline (PBS) --- p.33 / Chapter 2.1.3. --- Drug preparation / Chapter 2.1.3.1. --- Recombinant cytokines --- p.34 / Chapter 2.1.3.2. --- Antibodies / Chapter 2.1.3.2.1. --- Antibodies used in expression analysis --- p.34 / Chapter 2.1.4. --- Antibodies used in Western blotting --- p.34 / Chapter 2.1.5. --- Reagents for RNA isolation --- p.36 / Chapter 2.1.6. --- Reagents for reverse transcription-polymerase chain reaction (RT-PCR) --- p.36 / Chapter 2.1.7. --- Reagents for Electrophoresis --- p.38 / Chapter 2.1.8. --- Reagents and buffers for Western blotting --- p.38 / Chapter 2.1.9. --- Other chemicals and reagents --- p.39 / Chapter 2.2. --- Methods / Chapter 2.2.1. --- Maintenance of C6 cells --- p.39 / Chapter 2.2.2. --- Preparation of cells for assays --- p.40 / Chapter 2.2.3. --- Drugs preparation --- p.40 / Chapter 2.2.4. --- Determination of RNA expression by RT-PCR analysis / Chapter 2.2.4.1. --- RNA extraction --- p.41 / Chapter 2.2.4.2. --- Spectrophotometric Quantitation of DNA and RNA --- p.43 / Chapter 2.2.4.3. --- RNA gel electrophoresis --- p.43 / Chapter 2.2.4.4. --- Reverse transcription-polymerase chain reaction (RT- PCR) --- p.43 / Chapter 2.2.4.5. --- Separation of PCR products by agarose gel electrophoresis --- p.43 / Chapter 2.2.4.6. --- Quantification of band density --- p.45 / Chapter 2.2.4.7. --- Restriction enzyme (RE) digestion --- p.45 / Chapter 2.2.5. --- Determination of protein expression by Western blotting / Chapter 2.2.5.1. --- Total protein extraction --- p.46 / Chapter 2.2.5.2. --- Western blotting analysis --- p.46 / Chapter CHAPTER 3. --- RESULTS / Chapter 3.1. --- Effects of TNF-α on cell cycle related genes and proteins expression --- p.49 / Chapter 3.1.1. --- Effects of TNF-α on the time courses of cyclin D1 gene and protein expression --- p.49 / Chapter 3.1.2. --- Effect of TNF-α on the time course of cyclin D2 gene expression --- p.50 / Chapter 3.1.3. --- Effects of TNF-α on the time courses of cyclin D3 gene and protein expression --- p.53 / Chapter 3.1.4. --- Effects of TNF-α on the time courses of cdk-4 gene and protein expression --- p.55 / Chapter 3.1.5. --- Effects of TNF-α on the time courses of cyclin E gene and protein expression --- p.55 / Chapter 3.1.6. --- Effects of TNF-α on the time courses of cdk-2 gene and protein expression --- p.58 / Chapter 3.1.7. --- Effects of TNF-α on the time courses of p15 gene and protein expression --- p.61 / Chapter 3.1.8. --- Effects of TNF-α on the time courses of p27 gene and protein expression --- p.61 / Chapter 3.1.9. --- Effects of TNF-α on the time courses of p21 gene and protein expression --- p.64 / Chapter 3.1.10. --- Effects of TNF-α on the time courses of p130 gene and protein expression --- p.66 / Chapter 3.1.11. --- Effects of TNF-α on the time courses of Cak gene and protein expression --- p.66 / Chapter 3.1.12. --- Effects of TNF-α on the time courses of cyclin H gene and protein expression --- p.68 / Chapter 3.1.13. --- Effects of TNF-α on the time courses of cyclin B gene and protein expression- --- p.71 / Chapter 3.1.14. --- Effect of TNF-α on the time course of bcl-2 protein expression --- p.71 / Chapter 3.1.15. --- Effects of TNF-α on the time courses of bcl-XL gene and protein expression --- p.73 / Chapter 3.1.16. --- Effect of TNF-α on the time course of bcl-xα gene expression --- p.73 / Chapter 3.1.17. --- Effects of TNF-α on the time courses of bcl-w gene and protein expression --- p.76 / Chapter 3.1.18. --- Effects of TNF-α on the time courses of Mcl-1 gene expression --- p.76 / Chapter 3.2. --- Effects of TNF-R1 and -R2 on cell cycle related genes and proteins expression --- p.81 / Chapter 3.2.1. --- Effects of blocking TNF-R1/ -R2 on the time courses of cyclin D1 gene and protein expression --- p.81 / Chapter 3.2.2. --- Effect of blocking TNF-R1/ -R2 on the time course of cyclin D2 gene expression --- p.82 / Chapter 3.2.3. --- Effects of blocking TNF-R1/ -R2 on the time courses of cyclin D3 gene and protein expression --- p.85 / Chapter 3.2.4. --- Effects of blocking TNF-R1/ -R2 on the time courses of cdk-4 gene and protein expression --- p.90 / Chapter 3.2.5. --- Effects of blocking TNF-R1/ -R2 on the time courses of cyclin E gene and protein expression --- p.93 / Chapter 3.2.6. --- Effects of blocking TNF-R1/ -R2 on the time courses of cdk-2 gene and protein expression --- p.93 / Chapter 3.2.7. --- Effects of blocking TNF-R1/ -R2 on the time courses of p15 gene and protein expression --- p.96 / Chapter 3.2.8. --- Effects of blocking TNF-R1/ -R2 on the time courses of p27 gene and protein expression --- p.99 / Chapter 3.2.9. --- Effects of blocking TNF-R1/ -R2 on the time courses of p21 gene and protein expression --- p.103 / Chapter 3.2.10. --- Effects of blocking TNF-R1/ -R2 on the time courses of pl30 gene and protein expression --- p.106 / Chapter 3.2.11. --- Effect of blocking TNF-R1/ -R2 on the time course of Cak gene expression --- p.110 / Chapter 3.2.12. --- Effects of blocking TNP-R1/ -R2 on the time courses of cyclin H gene and protein expression --- p.110 / Chapter 3.2.13. --- Effects of blocking TNF-R1/ -R2 on the time courses of cyclin B gene and protein expression --- p.112 / Chapter 3.2.14. --- Effect of blocking TNF-R1/ -R2 on the time course of bcl-2 protein expression --- p.116 / Chapter 3.2.15. --- Effects of blocking TNF-R1/ -R2 on the time courses of bcl-xL gene and protein expression --- p.119 / Chapter 3.2.16. --- Effect of blocking TNF-R1/ -R2 on the time course of bcl-xα gene expression --- p.122 / Chapter 3.2.17. --- Effects of blocking TNF-R1/ -R2 on the time courses of bcl-w gene and protein expression --- p.124 / Chapter 3.2.18. --- Effect of blocking TNF-R1/ -R2 on the time course of Mcl-1 gene expression --- p.124 / Chapter 3.3. --- "Effects of other cytokines (IL-6, IL-lα, IL-lβ, IFγ) on cell cycle related genes and proteins expression" --- p.129 / Chapter 3.3.1. --- "Effects of TNF-α, IL-6, IL-lα, IL-lβ, IFγ on cyclin D1 gene and protein expression" --- p.129 / Chapter 3.3.2. --- "Effects of TNF-a, IL-6, IL-lα, IL-lβ, IFγ on cyclin D2 gene and protein expression" --- p.132 / Chapter 3.3.3. --- "Effects of TNF-α, IL-6, IL-lα, IL-1β, IFγ on cyclin D3 gene and protein expression" --- p.136 / Chapter 3.3.4. --- "Effects of TNF-α, IL-6, IL-lα, IL-1β, IFγ on cdk-4 gene and protein expression" --- p.140 / Chapter 3.3.5. --- "Effects of TNF-α, IL-6, IL-lα, IL-1β, IFγ on cyclin E gene and protein expression" --- p.144 / Chapter 3.3.6. --- "Effects of TNF-α, IL-6, IL-lα, IL-1β, IFγ on cdk-2 gene and protein expression" --- p.148 / Chapter 3.3.7. --- "Effects of TNF-α, IL-6, IL-lα, IL-1β, IFγ on pl5 gene and protein expression" --- p.152 / Chapter 3.3.8. --- "Effects of TNF-α, IL-6, IL-lα, IL-1β, IFγ on p27 gene and protein expression" --- p.152 / Chapter 3.3.9. --- "Effects of TNF-α, IL-6, IL-lα, IL-ip, IFγ on p21 gene and protein expression" --- p.159 / Chapter 3.3.10. --- "Effects of TNF-α, IL-6, IL-lα, IL-lβ, IFγ on pl30 gene and protein expression" --- p.162 / Chapter 3.3.11. --- "Effects of TNF-α, IL-6, IL-lα, IL-lp, IFγ on Cak gene expression" --- p.166 / Chapter 3.3.12. --- "Effects of TNF-α, IL-6, IL-lα, IL-1β, IFy on cyclin H gene and protein expression -" --- p.170 / Chapter 3.3.13. --- "Effects of TNF-α, IL-6, IL-lα, IL-1β, IFγ on cyclin B gene and protein expression" --- p.174 / Chapter 3.3.14. --- "Effects of TNF-α, IL-6, IL-lα, IL-1β, IFγ on bcl-2 gene and protein expression" --- p.178 / Chapter 3.3.15. --- "Effects of TNF-a, IL-6, IL-lα, IL-1β, IFγ on bcl-xL gene and protein expression" --- p.178 / Chapter 3.3.16. --- "Effects of TNF-α, IL-6, IL-lα, IL-1β, IFγ on bcl-xα gene expression" --- p.184 / Chapter 3.3.17. --- "Effects of TNF-α, IL-6, IL-lα, IL-lβ, IFγ on bcl-w gene and protein expression" --- p.187 / Chapter 3.3.18. --- "Effects of TNF-α, IL-6, IL-lα, IL-1β, IFγ on Mcl-1 gene expression" --- p.191 / Chapter 3.4. --- Effects of P-ARs on cell cycle related genes expression --- p.194 / Chapter 3.4.1. --- Effects of β-AR agonists and antagonists on cyclin D1 gene expression --- p.195 / Chapter 3.4.2. --- Effects of β-AR agonists and antagonists on cyclin D2 gene expression --- p.198 / Chapter 3.4.3. --- Effects of β-AR agonists and antagonists on cyclin D3 gene expression --- p.201 / Chapter 3.4.4. --- Effects of β-AR agonists and antagonists on cdk-4 gene expression --- p.204 / Chapter 3.4.5. --- Effects of β-AR agonists and antagonists on cyclin E gene expression --- p.207 / Chapter 3.4.6. --- Effects of β-AR agonists and antagonists on cdk-2 gene expression - --- p.210 / Chapter 3.4.7. --- Effects of β-AR agonists and antagonists on p15 gene expression --- p.213 / Chapter 3.4.8. --- Effects of β-AR agonists and antagonists on p27 gene expression --- p.216 / Chapter 3.4.9. --- Effects of β-AR agonists and antagonists on p21 gene expression --- p.219 / Chapter 3.4.10. --- Effects of β-AR agonists and antagonists on p130 gene expression --- p.222 / Chapter 3.4.11. --- Effects of β-AR agonists and antagonists on Cak gene expression --- p.225 / Chapter 3.4.12. --- Effects of β-AR agonists and antagonists on cyclin H gene expression --- p.228 / Chapter 3.4.13. --- Effects of β-AR agonists and antagonists on cyclin B gene expression --- p.231 / Chapter 3.4.14. --- Effects of β-AR agonists and antagonists on bcl-XL gene expression --- p.233 / Chapter 3.4.15. --- Effects of β-AR agonists and antagonists on bcl-xα gene expression --- p.236 / Chapter 3.4.16. --- Effects of β-AR agonists and antagonists on bcl-w gene expression --- p.239 / Chapter 3.4.17. --- Effects of β-AR agonists and antagonists on Mcl-1 gene expression --- p.243 / Chapter CHAPTER 4. --- DISCUSSION & CONCLUSION --- p.247 / Chapter 4.1. --- Effects of TNF-α on the induction of cell cycle regulatory genes/proteins expression --- p.248 / Chapter 4.2. --- Effects of TNF-α on bcl-2 family apoptotic inhibitor genes expression --- p.250 / Chapter 4.3. --- The TNF-R subtype(s) responsible for the TNF-a-induced cell cycle regulatory genes and proteins expression --- p.251 / Chapter 4.4. --- Is the TNF-α-induced cell cycle regulatory genes and proteins expression cytokine specific? --- p.253 / Chapter 4.5. --- The relationship between TNF-α and β-adrenergic mechanism in C6 cell proliferation --- p.254 / Chapter 4.6. --- General Discussion --- p.256 / Chapter 4.7. --- Possible treatments for brain injury --- p.258 / APPENDIX --- p.259 / REFERENCES --- p.348
3

The biochemical study in tumor necrosis factor-alpha-mediated cytotoxicity.

January 1998 (has links)
by Ko Samuel. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 209-227). / Abstract also in Chinese. / Acknowledgements --- p.i / Abbreviations --- p.ii / Abstract --- p.vii / Abstract in Chinese --- p.x / List of Figures --- p.xiii / List of Tables --- p.xx / Publication --- p.xxi / Contents --- p.xxii / Chapter Chapter 1. --- General Introduction --- p.1 / Chapter 1.1 --- Tumor Necrosis Factor --- p.2 / Chapter 1.1.1 --- History of Tumor Necrosis Factor --- p.2 / Chapter 1.1.2 --- TNF Subtypes and Their Purification --- p.3 / Chapter 1.1.3 --- Release of TNF --- p.9 / Chapter 1.1.4 --- Biological Actions of TNF --- p.9 / Chapter 1.2 --- Tumor Necrosis Factor Receptor --- p.11 / Chapter 1.2.1 --- Purification of TNF Receptor --- p.11 / Chapter 1.2.2 --- Regulation of TNF Receptor --- p.14 / Chapter 1.2.3 --- "Functions of TNF Receptor 1,Receptor 2 and Soluble TNF Receptors" --- p.15 / Chapter 1.3 --- Possible Signal Transductions of Tumor Necrosis Factor-Alpha --- p.17 / Chapter 1.3.1 --- Activation of Phospholipase A2 Cascade --- p.18 / Chapter 1.3.2 --- Activation of Phospho lipase C Pathway --- p.19 / Chapter 1.3.3 --- Activation of Sphingomyelin Pathway --- p.20 / Chapter 1.3.4 --- Activation of Protein Kinase --- p.22 / Chapter 1.3.5 --- Activation of the Cascade of Death Domain --- p.23 / Chapter 1.4 --- Induction of Both Necrosis and Apoptosis by Tumor Necrosis Factor-Alpha --- p.25 / Chapter 1.4.1 --- Apoptosis Versus Necrosis --- p.25 / Chapter 1.4.2 --- TNF Can Induce Both Apoptosis and Necrosis --- p.27 / Chapter 1.5 --- Possible Mechanisms of Tumor Necrosis Factor-Alpha- Mediated Cytotoxicity --- p.27 / Chapter 1.5.1 --- Release of Reactive Oxygen Species --- p.28 / Chapter 1.5.2 --- Release of Intracellular Calcium --- p.31 / Chapter 1.5.3 --- Miscellaneous Mechanisms --- p.36 / Chapter 1.6 --- Objective of Studies --- p.37 / Chapter Chapter 2. --- Materials and Methods --- p.39 / Chapter 2.1 --- Materials --- p.40 / Chapter 2.1.1 --- Buffer --- p.40 / Chapter 2.1.2 --- Culture Media --- p.45 / Chapter 2.1.3 --- Chemicals --- p.46 / Chapter 2.1.4 --- Culture of Cells --- p.49 / Chapter 2.1.4.1 --- "Tumor Necrosis Factor-Alpha-Sensitive Cell Line, L929" --- p.49 / Chapter 2.1.4.2 --- "Tumor Necrosis Factor-Alpha-Resistant Cell Line, rL929, rL929-l IE and rL929-4F" --- p.50 / Chapter 2.2 --- Methods --- p.50 / Chapter 2.2.1 --- Agarose Gel Electrophoresis --- p.50 / Chapter 2.2.2 --- Cytotoxicity Assay --- p.52 / Chapter 2.2.3 --- Confocal Laser Scanning Microscopy --- p.53 / Chapter 2.2.4 --- Flow Cytometry --- p.57 / Chapter Chapter 3. --- Results --- p.65 / Chapter 3.1 --- Induction of Apoptosis in Tumor Necrosis Factor-Alpha- Treated L929 Cell --- p.66 / Chapter 3.1.1 --- Introduction --- p.66 / Chapter 3.1.2 --- TNF Induced DNA Fragmentation in L929 Cells --- p.67 / Chapter 3.2 --- Effect of Tumor Necrosis Factor-Alpha on Cell Cycle --- p.73 / Chapter 3.2.1 --- Introduction --- p.73 / Chapter 3.2.2 --- Effect of TNF on Cell Cycle --- p.75 / Chapter 3.3 --- Release of Reactive Oxygen Species in Tumor Necrosis Factor-Alpha Treatment --- p.79 / Chapter 3.3.1 --- Introduction --- p.79 / Chapter 3.3.2 --- Release of Reactive Oxygen Species in TNF- Treated L929 Cells is Time Dependent --- p.81 / Chapter 3.3.3 --- Effect of Antioxidants on TNF-Mediated Cytotoxicity --- p.93 / Chapter 3.3.4 --- Effect of Mitochondrial Inhibitors on TNF-Mediated Cytotoxicity --- p.96 / Chapter 3.4 --- The Role of Calcium in Tumor Necrosis Factor-Alpha Treatment --- p.112 / Chapter 3.4.1 --- Introduction --- p.112 / Chapter 3.4.2 --- Release of Intracellular Calcium in TNF-Treated L929 Cells --- p.113 / Chapter 3.4.3 --- Effect of Calcium-Inducing Agents on TNF-Treated L929Cells --- p.127 / Chapter 3.5 --- Relationship between Reactive Oxygen Species and Calcium in Tumor Necrosis Factor-Alpha-Mediated Cytotoxicity --- p.133 / Chapter 3.5.1 --- Introduction --- p.133 / Chapter 3.5.2 --- Effect of Intracellular Calcium Chelator on TNF- Mediated ROS Release and Cytotoxicity --- p.133 / Chapter 3.5.3 --- Effect of Mitochondrial Calcium on TNF-Mediated ROS Release and Cytotoxicity --- p.147 / Chapter 3.6 --- Effect of Tumor Necrosis Factor-Alpha on pH --- p.162 / Chapter 3.6.1 --- Introduction --- p.162 / Chapter 3.6.2 --- Effect of TNF on pH --- p.162 / Chapter 3.7 --- Effect of Tumor Necrosis Factor-Alpha on Mitochondrial Membrane Potential --- p.165 / Chapter 3.7.1 --- Introduction --- p.165 / Chapter 3.7.2 --- Effect of TNF and Some Drugs on Mitochondrial Membrane Potential --- p.165 / Chapter 3.8 --- "Comparison of Effects of Tumor Necrosis Factor-Alpha on Susceptible Cell Line, L929 and Resistant Cell Line, rL929, rL929-11E and rL929-4F" --- p.169 / Chapter 3.8.1 --- Introduction --- p.169 / Chapter 3.8.2 --- Effect of TNF on the Cytotoxicity of Resistant Cell Lines --- p.170 / Chapter 3.8.3 --- Effect of TNF on the Release of ROS in Resistant Cell Lines --- p.170 / Chapter 3.8.4 --- Effect of TNF on the Release of Calcium in Resistant Cell Lines --- p.178 / Chapter 3.8.5 --- Effect of TNF on Cell Cycle in Resistant Cell Lines --- p.185 / Chapter Chapter 4. --- General Discussion --- p.187 / Chapter 4.1 --- Tumor Necrosis Factor Induced Apoptosis in L929 Cells --- p.188 / Chapter 4.2 --- Tumor Necrosis Factor Increased the Release of Reactive Oxygen Species in L929 Cells --- p.189 / Chapter 4.3 --- Tumor Necrosis Factor Increased the Release of Calcium in L929 Cells --- p.194 / Chapter 4.4 --- Calcium Induced Reactive Oxygen Species Release in TNF- Treated L929 Cells --- p.197 / Chapter 4.5 --- Tumor Necrosis Factor Did Not Change the pH and Mitochondrial Membrane Potential in TNF-Treated L929 Cells --- p.198 / Chapter 4.6 --- Tumor Necrosis Factor Did Not Increase the Release of Reactive Oxygen Species or Calcium in Resistant Cell Lines --- p.201 / Chapter Chapter 5. --- Future Perspective --- p.204 / Chapter 5.1 --- The Relationship Between Tumor Necrosis Factor and Cytochrome c --- p.205 / Chapter 5.2 --- The Relationship Between Tumor Necrosis Factor and Mitochondrial DNA Damage --- p.206 / Chapter 5.3 --- Clinical studies with Tumor Necrosis Factor --- p.206 / References --- p.208
4

NGF signaling in Schwann cells : identification of two p75 interacting proteins /

Khursigara, Gus. January 2001 (has links)
Thesis (Ph. D.)--Cornell University, 2001. / Vita. Includes bibliographical references (leaves 167-194).
5

Efficacy of TNF inhibitor treatment in a model of heart failure and resulting cachexia

Steffen, Brian. January 2007 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2007. / "December 2007" The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Includes bibliographical references.
6

Studies of pharmacological interventions and pathogenesis of rheumatoid arthritis /

Lampa, Jon, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 5 uppsatser.
7

Regulation of lymphocyte activation and apoptosis in the immune response in multiple sclerosis /

Gomes, Andreia Ferreira de Castro, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 5 uppsatser.
8

Studies of molecular mechanisms of action of TNF antagonists in rheumatoid arthritis /

Catrina, Anca Irinel, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
9

Effects of enhanced glutathione biosynthesis on oxidative stress-mediated hepatocellular injury and gene expression in mice /

Shi, Shengli, January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (leaves 116-130).
10

Ubiquitination-dependent activation of IKK

Ea, Chee-Kwee. January 2005 (has links)
Thesis (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2005. / Embargoed. Vita. Bibliography: 99-113.

Page generated in 0.0758 seconds