• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Implement the Memory Unit with Reconfigurable Computing Unit

Chen, Juei-Tsung 24 August 2011 (has links)
It has been confirmed that reconfigurable computing system has potential to accelerate in large amounts of data computing. However, current trend is towards combining a microprocessor with one or many reconfigurable computing units. Thus, it might cause multiple devices to compete for System Bus that caused bus collision. And then the system performance will be limited on the bandwidth. Based on these shortcomings, this paper proposes an architecture which combines DDRx memory with a reconfigurable FPGA to construct a module with both storage and computing functions called Brain module. Brain module¡¦s instruction set is created through the extension of DDRx memory instruction. We also design the brain module controller and Hardware Management Unit. According to the definition of Software-Hardware Co-communication, the dynamically constructed Hardware Management Unit will create a hardware function call mechanism. We also establish internal data switching mechanism to achieve transmission data between memory and reconfigurable computing internal the controller. Thus, it can reduce the workload of System Bus and integrate hardware and software work. In software structure, we inherit the traditional programming language and integrate program data area and reconfigurable computing data area. Brain module data is accessed through memory mapping I/O. User can implement the software-hardware co-work by integrated programming environment,
2

FUNCTIONAL ENHANCEMENT AND APPLICATIONS DEVELOPMENT FOR A HYBRID, HETEROGENEOUS SINGLE-CHIP MULTIPROCESSOR ARCHITECTURE

Hegde, Sridhar 01 January 2004 (has links)
Reconfigurable and dynamic computer architecture is an exciting area of research that is rapidly expanding to meet the requirements of compute intense real and non-real time applications in key areas such as cryptography, signal/radar processing and other areas. To meet the demands of such applications, a parallel single-chip heterogeneous Hybrid Data/Command Architecture (HDCA) has been proposed. This single-chip multiprocessor architecture system is reconfigurable at three levels: application, node and processor level. It is currently being developed and experimentally verified via a three phase prototyping process. A first phase prototype with very limited functionality has been developed. This initial prototype was used as a base to make further enhancements to improve functionality and performance resulting in a second phase virtual prototype, which is the subject of this thesis. In the work reported here, major contributions are in further enhancing the functionality of the system by adding additional processors, by making the system reconfigurable at the node level, by enhancing the ability of the system to fork to more than two processes and by designing some more complex real/non-real time applications which make use of and can be used to test and evaluate enhanced and new functionality added to the architecture. A working proof of concept of the architecture is achieved by Hardware Description Language (HDL) based development and use of a Virtual Prototype of the architecture. The Virtual Prototype was used to evaluate the architecture functionality and performance in executing several newly developed example applications. Recommendations are made to further improve the system functionality.
3

FPGA Implementation of the FDTD Algorithm Using Local Sram

Wu, Shuguang January 2005 (has links)
No description available.
4

PERFORMANCE IMPROVEMENT OF AN FPGA-BASED FDTD SOLVER FOR RECONFIGURABLE HIGH PERFORMANCE COMPUTING

DESAI, ASHISH R. 03 April 2006 (has links)
No description available.

Page generated in 0.0951 seconds