• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 533
  • 48
  • 40
  • 40
  • 40
  • 25
  • 25
  • 25
  • 25
  • 25
  • 15
  • 6
  • Tagged with
  • 587
  • 587
  • 298
  • 282
  • 209
  • 180
  • 129
  • 120
  • 114
  • 100
  • 87
  • 84
  • 80
  • 80
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Caracterização de sinais secundários em imagens mamográficas por redes neurais artificiais para auxílio ao diagnóstico do câncer de mama / Characterization of secondary signals in mammographic images by artificial neural networks to aid diagnosis of breast cancer

Renan Caldeira Menechelli 25 February 2013 (has links)
O constante aumento do número de novos casos de câncer de mama vem despertando interesse na elaboração de módulos de esquemas CAD a fim de proporcionar um diagnóstico de maior precisão. Entretanto, a maioria das pesquisas está empenhada em detectar ou classificar fatores primários presentes em imagens mamográficas, como módulos e microcalcificações. Áreas assimétricas, retração de mamilo, linfonodos axilares, entre outros, são considerados como fatores secundários no diagnóstico do câncer de mama, apesar de poderem alertar para o surgimento não só dessa, mas de outras doenças no futuro. Por isso, essa pesquisa contempla a implementação de um sistema computacional capaz de auxiliar na detecção e classificação, conforme padrão BI-RADS®, de regiões que contenham sinais secundários capazes de levantar suspeitas da presença ou surgimento do câncer de mama, em imagens mamográficas digitais, utilizando técnicas inteligentes e automáticas de processamento de imagens e redes neurais artificiais. A acurácia alcançada em cada etapa foi: detecção de assimetria de 82,8%, retração de mamilo de 95% e Az = 0,93, detecção de linfonodos axilares = 74,9%. Objetiva-se que o resultado do trabalho seja inserido como um dos módulos de um protótipo de esquema CADx em mamografia, a fim de ampliar o conjunto de informações a serem usadas na classificação de cada caso sob análise, visando o aumento da precisão diagnóstica. / The increase in the number of cases of breast cancer have attracted interest in developing modules of CAD schemes to provider higher diagnostic accuracy. However, most researches are engaged in detect and classify primary factors present in mammographic images such as nodules and microcalcifications. Asymmetric areas, nipple retraction, axilary limph nodes, among other, are considered as secondary factors to diagnostic the breast cancer, although they may alert for the emergence not only of this but of other diseases in the future. Thus, this research includes the implementation of a computer system able to assist in the detection and classification, according to BI-RADS®, of regions that containing secondary signals able to arousing suspicion of the presence or appearance of breast cancer in digital mammographic images using intelligent and automatic techniques in the image processing and artificial neural networks. The accuracy obtained in each step was: detection of asymmetry of 82.8%, nipple retraction of 95% and Az = 0.93, detection of axilary lymph nodes = 74.9%. The purpose is that the result of the work is entered as one of the modules of a prototype of CADx schem in mammography in order to extend the range of information to be used in the classification of each case under analysis, aiming to increase diagnostic accuracy.
332

Identificação de espécies vegetais por meio da análise de textura foliar / Plant species recognition by leaf texture analysis

Casanova, Dalcimar 24 October 2008 (has links)
A biodiversidade das espécies existentes no riquíssimo reino vegetal, tornam os modelos tradicionais de taxonomia uma tarefa muito complexa e morosa, na qual o processo de classificação é tradicionalmente realizado manualmente. As dificuldades presentes nesse processo implicam na existência de poucas pesquisas de classificação vegetal utilizando métodos matemáticos e computacionais. Desta forma, visando contribuir com as técnicas de taxonomia já desenvolvidas, este estudo objetiva desenvolver e testar uma metodologia computacional de identificação de espécies vegetais por meio da análise da textura foliar. Motivado pelo projeto TreeVis, este trabalho realiza uma revisão dos métodos utilizados para análise de textura em imagens digitais (foco concentrado em extração de características e classificação), investigando a aplicabilidade de métodos tradicionais como matrizes de coocorrência, técnicas estado da arte como Gabor wavelets e também de novos e promissoras técnicas de análise de textura, como a dimensão fractal volumétrica. No contexto de classificação investiga-se métodos para reconhecimento de padrões lineares com base em análise de dados multivariados, não lineares com base na teoria das Redes Neurais Artificiais e métodos simples para combinação de diferentes classificadores (comitê de máquinas). Apesar da alta similaridade entre classes e similaridade intraclasses não adequada, os resultados alcançados mostraram-se excelentes. A melhor estratégia de classificação, utilizando comitê de máquinas com descritores de Gabor wavelets/cor e dimensão fractal volumétrica/cor, obteve uma probabilidade de acerto global de 96:32% nas 40 classes estudadas. Esse resultado demonstra como os métodos computacionais de análise de imagens, em especial análise de textura, podem contribuir facilitando e agilizando a tarefa de identificação de espécies vegetais / Biodiversity of species existing in the plant kingdom make the use of traditional models of taxonomy, a process of classification traditionally performed manually, a very complex and time-consuming task. Most of difficulties in that process result from the existence of few researches on plant classification using mathematical and computational methods. In this way, to contribute with the taxonomy techniques already developed, this study aims to develop and test a computational method for identifying plant species by leaf texture analysis. Motivated by the TreeVis project, this work is a comprehensive revision of texture analysis methods used in digital images (focus concentrated in features extraction and classification). This study investigates the applicability of traditional methods such as co-occurrence matrix, state of the art techniques as Gabor wavelets, and new and promising texture analysis methods, such as volumetric fractal dimension. In classification context is investigated methods of pattern recognition based on multivariate data analysis, artificial neural networks and committee machines. Although leaf classes present high similarity between classes and not appropriate similarity intraclasses, the results obtained are excellent. The best strategy for classification, using committee machines with descriptors of Gabor wavelets/color and volumetric fractal dimension/color, yielded a high probability of success, 96:32% in 40 classes studied. This result demonstrates how computational methods of images analysis, in particular texture analysis, can contribute and make more easier and faster the task of identifying plant species
333

Análise estatística multivariada para reconhecimento de padrões em ensaios não destrutivos magnéticos. / Multivariate statistical analysis for pattern recognition applied to a non destructive magnetic\'s testing.

Alvarez Rosario, Alexander 01 February 2011 (has links)
Neste trabalho se estuda a aplicação de técnicas de estatística multivariada para reconhecimento de padrões em sinais de ensaios não destrutivos (END) magnéticos, baseados no Ruído Magnético de Barkhausen (RMB). O reconhecimento de padrões pode ser feito de forma não supervisionada com a técnica multivariada de Análise de Agrupamentos, conglomerados ou Clusters que definem grupos segundo critérios de similaridade. Já para reconhecimento supervisionado a Análise Discriminante procura classificar amostras novas em grupos conhecidos, a priori, usando para este propósito uma regra de classificação criada a partir desses grupos de amostras conhecidos. Foram utilizados dois casos de detecção e classificação utilizando RMB. O RMB é um fenômeno magnético gerado por abruptas mudanças na magnetização de materiais ferromagnéticos quando submetidos a campos magnéticos variáveis. Essas mudanças estão relacionadas com a microestrutura do material, presença e distribuição de tensões elásticas (tensão e compressão). No primeiro caso de estudo procura-se identificar arames quebrados em risers, através da medição de tensão mecânica. No segundo caso procura-se classificar diferentes tratamentos térmicos em Aço AISI 420. Para a análise de integridade estrutural de risers foi feita a redução da dimensionalidade dos dados via Análise de Componentes Principais e posteriormente Análise de Agrupamentos. Já para o problema de classificação de amostras de aço foi usada a técnica de Análise Discriminante Linear de Fisher e a Quadrática. Os resultados das análises mostraram que as técnicas de Estatísticas Multivariadas proporcionam ferramentas muito adequadas para aumentar a eficiência da inspeção na área de END Magnéticos em geral e RMB em particular. / The present work deals with application of multivariate statistic techniques for pattern recognition in signals from Non-Destructive Essays (NDE), based on the Magnetic Barkhausen Noise (MBN). Pattern recognition can be done in a nonsupervised way by Cluster Analysis defining similarity criteria. On the other hand, for supervised recognition, Discriminant Analysis looks for classifying new samples in known groups, a priori, by means of classification rules created for these known sample groups. Two detection and classification cases were studied by MBN. The MBN is a magnetic phenomenon generated by sudden changes in magnetization of ferromagnetic materials, when these materials are subjected to variable magnetic fields. These changes are related to material microstructure as well as to the presence of elastic stresses (tension and compression). In the first studied case, the present study searches identifying broken wires in risers through measurements of mechanical strain. In the second case, the study classifies different thermal treatments in AISI 420 steel samples. Regarding the analysis of structural integrity of risers, firstly the reduction of data dimensionality was obtained via Analysis of Main Components and, later, Cluster Analysis was performed. Concerning the classification problem of steel samples, the Fisher Linear Discriminant Analysis and the Quadratic Analysis were used. Analysis results showed that Multivariate Statistic Techniques give rise to tools very appropriated for increasing the efficiency of inspection both in the Magnetic NDE area in general, and MBN in particular.
334

Padrões de pulsos e computação em redes neurais com dinâmica. / Spike patterns and computation in dynamical neural networks.

Sandmann, Humberto Rodrigo 05 March 2012 (has links)
O processamento de sinais feito pelos sistemas neurais biológicos é altamente eficiente e complexo, por isso desperta grande atenção de pesquisa. Basicamente, todo o processamento de sinais funciona com base em redes de neurônios que emitem e recebem pulsos. Portanto, de forma geral, os estímulos recebidos do sistema sensorial por uma rede neural biológica de algum modo são convertidos em trens de pulsos. Aqui, nesta tese, é apresentada uma nova arquitetura composta por duas camadas: a primeira recebe correntes de estímulos de entrada e os mapeia em trens de pulsos; a segunda recebe esses trens de pulsos e os clássica em conjuntos de estímulos. Na primeira camada, a conversão de correntes de estímulos em trens de pulso é feita através de uma rede de neurônios osciladores acoplados por pulso. Esses neurônios possuem uma frequência natural de disparo e quando são agrupados em redes podem se coordenar para apresentar uma dinâmica global a longo prazo. Por sua vez, a dinâmica global também é sensível às correntes de entrada. Na segunda camada, a classificação dos trens de pulsos em conjuntos de estímulos é implementada por um neurônio do tipo integra-e-dispara. O comportamento típico para esse neurônio é de disparar ao menos uma vez para todas as integrações de trens de pulsos de uma determinada classe; caso contrário, ele deve car em silêncio. O processo de aprendizado da segunda camada depende do conhecimento do intervalo de tempo de repetição de um trem de pulsos. Portanto, nesta tese, são apresentadas métricas para definir tal intervalo de tempo, dando, assim, autonomia para a arquitetura. É possível concluir com base nos ensaios realizados que a arquitetura desenvolvida possui uma grande capacidade para mapeamento de correntes de entradas em trens de pulsos sem a necessidade de alterações na estrutura da arquitetura; também que a adição da dimensão tempo pela primeira camada ajuda na classificação realizada pela segunda. Assim, um novo modelo para realizar processos de codificação e decodificação é apresentado, desenvolvido através de séries de ensaios computacionais e caracterizado por medidas de sua dinâmica. / The signal processing done by the neural systems is highly efficient and complex, so that it attracts a large attention for research. Basically, all the signal processing functions are based on networks of neurons that send and receive spikes. Therefore, in general, the stimuli received from the sensory system by a biological neural network somehow are converted into spike trains. Here, in this thesis, we present a new architecture composed of two layers: the first layer receives streams of input stimuli and maps them on spike trains; the second layer receives these spike trains and classifies them in a sets of stimuli. In the first layer, the conversion of currents of stimuli on spike trains is made by a pulse-coupled neural network. Neurons in this context are like oscillators and have a natural frequency to shoot; when they are grouped into networks, they can be coordinated to present a global long-term dynamics. In turn, this global dynamics is also sensible to the input currents. In the second layer, the classification of spike trains in sets of stimuli is implemented by an integrate-and-re neuron. The typical behavior for this neuron is to shoot at least once every time that it receives a known spike train; otherwise, it should be in silence. The learning process of the second layer depends on the knowledge of the time interval of repetition of a spike train. Therefore, in this thesis, metrics are presented to define this time interval, thus giving autonomy to the architecture. It can be concluded on the basis of the tests developed that the architecture has a large capacity for mapping input currents on spike trains without requiring changes in its structure; moreover, the addition of the time dimension done by the first layer helps in the classification performed by the second layer. Thus, a new model to perform the encoding and decoding processes is presented, developed through a series of computational experiments and characterized by measurements of its dynamics.
335

Desenvolvimento de metodologia para previsão da demanda de energia elétrica residencial considerando aspectos socioeconômicos e ferramentas computacionais inteligentes. / Development of methodology of forecasting for residential electricity, considering socioeconomic and intelligent computational tools.

Gastaldello, Danilo Sinkiti 08 May 2017 (has links)
O aumento da demanda por energia registrado nos últimos anos preocupa, pois a construção de novas fontes geradoras é barrada, muitas vezes, por restrições ambientais. Assim, o governo e as empresas de energias estão investindo em um melhor planejamento do sistema. No entanto, para haver uma proposta mais consistente para os consumidores residenciais se faz necessário conhecer melhor o perfil de cada consumidor, que é uma tarefa um tanto quanto difícil, visto que cada consumidor possui o livre arbítrio para consumir a energia de acordo com o conforto que ele deseja, de acordo com seus padrões econômicos e conforme aspectos culturais e sociais do ambiente em que ele vive. Neste contexto, a proposta desta tese foi analisar os impactos que os aspectos socioeconômicos tinham sobre o consumo de energia da classe residencial, sendo desenvolvido um algoritmo que gera curvas de carga virtuais baseadas em dados estatísticos do IBGE e da ANEEL. A partir dados de curvas virtuais, as ferramentas computacionais inteligentes, mais especificamente, as Redes Bayesianas e a Floresta de Caminhos Ótimos, foram treinadas com intuito de avaliar a possibilidade de criação de perfis e classificação dos consumidores e de suas características. Os resultados alcançados demonstram que a consideração dos aspectos socioeconômicos em avaliação de curvas de carga são pertinentes e que devem fazer parte do planejamento do sistema. Outra constatação é que as ferramentas computacionais inteligentes estudadas podem ser exploradas para auxiliar na previsão de consumo e criação de padrões e perfis dos consumidores. / The need for energy has increased in the past years, thus requiring the design of new power plants. However, the project of such new constructions has been considerably neglected, mainly due to environment constraints. However, the whole government and companies are now focusing on a better management of the national energy grid. Despite that new policy, there is a need for a better knowledge concerning the user\'s behavior in order to present proposals that really take into account the consumers, since each them has the freedom to use the energy the way he wants to, as well as according to his socioeconomic habits. In this context, this thesis proposes to analyze the socioeconomic impacts of the energy consumption concerning residential consumers, being also developed an algorithm that generates virtual load curves based on statistical data from both IBGE and ANEEL. With that data on hand, the intelligent tools, e.g., Bayesian Networks and Optimum-Path Forest, were trained aiming at evaluating the possibility to create profiles for the further identification of their classes according to that information. The results obtained highlighted the importance of the socioeconomic information when evaluating the load curves, which should be part of the whole system. Another conclusion concerns the intelligent tools, which can be further used for consumer forecasting, as well as to create patterns related to the consumers\' profiles.
336

Análise de formas 3D usando wavelets 1D, 2D e 3D / 3D Shape analysis using 1D, 2D and 3D wavelets

Pinto, Sílvia Cristina Dias 24 October 2005 (has links)
Este trabalho apresenta novos métodos para análise de formas tridimensionais dentro do contexto de visão computacional, destacando-se o uso das transformadas wavelets 1D, 2D e 3D, as quais proporcionam uma análise multi-escala das formas estudadas. As formas analisadas se dividem em três tipos diferentes, dependendo da sua representação matemática: f(t)=(x(t),y(t),z(t)), f(x,y)=z e f(x,y,z)=w. Cada tipo de forma é analisado por um método melhor adaptado. Primeiramente, tais formas passam por uma rotina de pré-processamento e, em seguida, pela caracterização por meio da aplicação das transformadas wavelet 1D, 2D e 3D para as respectivas formas. Esta aplicação nos permite extrair características que sejam invariantes à rotação e translação, levando em consideração alguns conceitos matemáticos da geometria diferencial. Destaca-se também neste trabalho a não obrigatoriedade de parametrização das formas. Os resultados obtidos a partir de formas extraídas de imagens médicas e dados biológicos, que justificam este trabalho, são apresentados. / This work presents new methods for three-dimensional shape analysis in the context of computational vision, being emphasized the use of 1D, 2D and 3D wavelet transforms, which provide a multiscale analysis of the studied shapes. The analyzed shapes are divided in three different types depending on their representation: f(t)=(x(t),y(t),z(t)), f(x,y)=z and f(x,y,z)=w. Each type of shape is analyzed by a more suitable method. Firstly, such shapes undergo a pre-processing procedure followed by the characterization using the 1D, 2D or 3D wavelet transform, depending on its representation. This application allows to extract features that are rotation- and translation-invariant, based on some mathematical concepts of differential geometry. In this work, we emphasize that it is not necessary to use the parameterized version of the 2D and 3D shapes. The experimental results obtained from shapes extracted from medical and biological images, that corroborate the introduced methods, are presented.
337

Movimentos sacádicos virtuais baseados em VG-RAM na detecção automática de placas de trânsito

Fontana, Cayo Magno da Cruz 29 August 2013 (has links)
Made available in DSpace on 2016-12-23T14:33:38Z (GMT). No. of bitstreams: 1 Cayo Magno da Cruz Fontana.pdf: 2930206 bytes, checksum: d91d48565941ee15a360dd464f84681f (MD5) Previous issue date: 2013-08-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A tarefa de detectar e reconhecer placas de trânsito, em ambientes reais, tem sido amplamente pesquisada nos últimos anos. Recentemente, a quantidade de veículos nas vias urbanas tem crescido exponencialmente. Grandes problemas nestas vias surgiram como consequência deste crescimento. Dados estatísticos da Organização das Nações Unidas (ONU) apontam acidentes de trânsito como uma das principais causas de mortes no planeta. Com o objetivo de auxiliar os condutores na tarefa de detectar e reconhecer placas de trânsito para alertá-los sobre possíveis alterações nas vias, ou até mesmo atuar no controle do carro, apresentaremos nesta dissertação uma abordagem biologicamente inspirada para a detecção de placas de trânsito com base em uma Rede Neural Sem Peso com Generalização Virtual da Memória de Acesso Randômico (Virtual Generalizing Random Access Memory Weightless Neural Network VG-RAM WNN). Redes Neurais sem Peso (RNSP) baseadas em neurônios VG-RAM apresentam um conjunto de eficientes funcionalidades para o aprendizado de máquina, oferecendo uma implementação simples, com treinos e testes rápidos. A arquitetura da nossa RNSP VG-RAM modela o movimento sacádicos dos olhos, e as transformações sofridas pelas imagens capturadas pela retina dos olhos para o colículo superior no cérebro dos mamíferos. Nós avaliamos o desempenho do nosso sistema na detecção de placas de trânsito utilizando como referência um conjunto de placas de trânsito de origem alemã (GTSDB). Utilizando apenas 12 imagens de placas de trânsito para a etapa de treinamento, nosso sistema foi classificado na 16ª posição, em um total de 53 métodos submetidos entre as 18 equipes participantes, para a detecção de placas de trânsito alemão na categoria proibitiva, na Competição Alemã de Placas de Trânsito, etapa do IJCNN 2013. Os resultados experimentais evidenciaram que nossa abordagem é capaz de detectar uma grande variedade de placas de trânsito, de forma confiável e eficiente, utilizando apenas algumas amostras para o treinamento / The task of detecting and recognizing road signs in real environments have been widely researched in recent years. Recently, the number of vehicles on urban roads has grown exponentially. Big problems in these pathways have emerged a result of this growth. Statistics of the United Nations (UN), points traffic accidents as a leading cause of death in the world. With the aim of assisting drivers in the task of detecting and recognizing road signs to alert them about possible changes in the way, or even act to control the car, we present in this dissertation a biologically inspired approach to detect traffic signs based on a Virtual Generalizing Random Access Memory Weightless Neural Networks - VG-RAM WNN. VG-RAM WNN are effective machine learning tools that offer simple implementation and fast training and test. Our VG-RAM WNN architecture models the saccadic eye movement system and the transformations suffered by the images captured by the eyes from the retina to the superior colliculus in the mammalian brain. We evaluated the performance of our VG-RAM WNN system on traffic sign detection using the German Traffic Sign Detection Benchmark (GTSDB). Using only 12 traffic sign images for training, our system was ranked in the 16th position, in the total 53 methods submitted among 18 teams, for the prohibitory category in the German Traffic Sign Detection Competition, part of the IJCNN 2013. Our experimental results showed that our approach is capable of reliably and efficiently detect a large variety of traffic sign categories using a few training samples
338

Reconhecimento do tipo de cachaça utilizando visão computacional e reconhecimento de padrões / Recognition of cachaça type using computer vision and pattern recognition

Rodrigues, Bruno Urbano 01 October 2015 (has links)
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2016-03-04T17:33:45Z No. of bitstreams: 2 Dissertação - Bruno Urbano Rodrigues - 2015.pdf: 15132019 bytes, checksum: 433c4b69a18cc41d168afacdf984560d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-03-07T12:14:40Z (GMT) No. of bitstreams: 2 Dissertação - Bruno Urbano Rodrigues - 2015.pdf: 15132019 bytes, checksum: 433c4b69a18cc41d168afacdf984560d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-03-07T12:14:40Z (GMT). No. of bitstreams: 2 Dissertação - Bruno Urbano Rodrigues - 2015.pdf: 15132019 bytes, checksum: 433c4b69a18cc41d168afacdf984560d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-10-01 / The cachaça is a type of drink distilled from sugar cane that has a great economic importance. Their classification includes three types: aged, premium and premium extra. These three classifications are related to the aging time drink in wooden barrels. Besides the aging time is relevant to know what the wood used in the barrels of storage for the properties of each drink are informed correctly to the consumer. This dissertation presented a method for the automatic recognition of the type of wood and the aging time using a computer vision system. The computer vision system is used in the analysis of the color models (RGB) additive and subtractive (CIELab) caught on digital camera. In association with computer vision, algorithmics, system of pattern recognition are used in conjunction with chemical information for the classification of samples. Went used four algorithmics: Artificial Neural network, k-NN (k-Nearest Neighbor), SVM (Support Vector Machines) and Naive Bayes. The end is used the ensemble AdaBoost, technique combining classifiers. In the study we used 108 samples of rum. The results obtained show that it was possible to obtain rates excess use of % 96.26 algorithmics of pattern recognition to the problem of the type of wood. The AdaBoost brought 100 indices % hit to the problem of classification of the type of wood and aging time. Your use proves that it is possible the sort of rum using only color model data contributing to a lower cost of production. / A cachaça é um tipo de bebida destilada a partir da cana-de-açúcar que possui uma grande importância econômica. Sua classificação inclui três tipos: envelhecida, premium e extra premium. Estas três classificações estão relacionadas ao tempo de envelhecimento da bebida em tonéis de madeira. Além do tempo de envelhecimento é relevante saber qual a madeira utilizada no tonél de armazenamento para que as propriedades de cada bebida sejam informadas corretamente ao consumidor. Neste trabalho é apresentado um método para o reconhecimento automático do tipo de madeira e do tempo de envelhecimento utilizando um sistema de visão computacional. O sistema de visão computacional é utilizado na análise dos modelos de cores aditivo (RGB) e subtrativo (CIELab) capturados por uma câmera digital. Em associação ao sistema de visão computacional, algoritmos de reconhecimento de padrões são utilizados em conjunto com informações químicas para a classificação das amostras. Para tal utiliza-se quatro algoritmos: Rede Neural Artificial, k-NN (k-Nearest Neighbor), SVM (Support Vector Machines) e Naive Bayes. Ao final é utilizado o ensemble AdaBoost, técnica que combina classificadores. No estudo foram utilizadas 108 amostras de cachaça. Os resultados obtidos demonstram que foi possível obter taxas superiores a 96,26% na utilização dos algoritmos de reconhecimento de padrões para o problema do tipo de madeira. O AdaBoost trouxe índices de 100% de acerto para o problema de classificação do tipo de madeira e tempo de envelhecimento. Sua utilização comprova que é possível a classificação de cachaça utilizando apenas dados do modelo de cores contribuindo para um menor custo de produção.
339

Identificação e estimativa da altura de árvores em imagens de satélite e do Google Street View / Tree image identification and estimation in satellite images and Google Street View

Lima, Heuber Gustavo Frazao de 20 December 2016 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-01-18T17:05:17Z No. of bitstreams: 3 Dissertação - Heuber Gustavo Frazao de Lima - 2016 - parte 01.pdf: 19496894 bytes, checksum: 2ff8c665e276bf1cffde555152883c4f (MD5) Dissertação - Heuber Gustavo Frazao de Lima - 2016 - parte 02.pdf: 12962376 bytes, checksum: 081b03c3a1a66f341203ed645575dc13 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-01-19T10:33:34Z (GMT) No. of bitstreams: 3 Dissertação - Heuber Gustavo Frazao de Lima - 2016 - parte 01.pdf: 19496894 bytes, checksum: 2ff8c665e276bf1cffde555152883c4f (MD5) Dissertação - Heuber Gustavo Frazao de Lima - 2016 - parte 02.pdf: 12962376 bytes, checksum: 081b03c3a1a66f341203ed645575dc13 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-01-19T10:33:34Z (GMT). No. of bitstreams: 3 Dissertação - Heuber Gustavo Frazao de Lima - 2016 - parte 01.pdf: 19496894 bytes, checksum: 2ff8c665e276bf1cffde555152883c4f (MD5) Dissertação - Heuber Gustavo Frazao de Lima - 2016 - parte 02.pdf: 12962376 bytes, checksum: 081b03c3a1a66f341203ed645575dc13 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-12-20 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / The electrical distribution is a critical activity since many people depend of this service. Faults in the distribution system occur from several factors that can damage the system and therefore interrupt the supply of energy. Among the various factors that may cause problems this work proposes a automatic detection of trees near or even in the distribution network. In order to avoid that the trees to force or even rupture of the distribution cables, are made the pruning of the trees that have some kind of risk to the network. However, this activity is usually manual and teams must sift through all the network for problems. The main objective of this work is to propose a process, based on computer vision, which allows the automated identification of nearby trees or under the power distribution network from aerial images provided by Google Earth and even estimate the height of the same from 2D Google Street View images. / A distribuição de energia elétrica é uma atividade fundamental, já que muitas pessoas dependem deste serviço. Falhas no sistema de distribuição ocorrem a partir de vários fatores que podem danificar o sistema e, portanto, interromper o fornecimento de energia elétrica. Dentre os vários fatores que podem causar problemas este trabalho propõe a detecção automática de árvores perto ou mesmo sob na rede de distribuição. A fim de evitar que as árvores possam forçar ou mesmo causar a ruptura dos cabos de distribuição, são feitas as podas das árvores que apresentam algum tipo de risco para a rede. No entanto, essa atividade é geralmente o manual fazendo com que as equipes necessitem vasculhar toda a rede para identificar os problemas. O principal objetivo deste trabalho é propor um processo, baseado em visão computacional, que permite a identificação automática de árvores próximas ou sob a rede de distribuição de energia a partir de imagens aéreas fornecidas pelo Google Earth, Google Maps e ainda estimar a altura das mesmas a partir de imagens 2D do Google Street View.
340

Avaliação de métodos ótimos e subótimos de seleção de características de texturas em imagens / Evaluation of optimal and suboptimal feature selection methods applied to image textures

Marco Aurelio Roncatti 10 July 2008 (has links)
Características de texturas atuam como bons descritores de imagens e podem ser empregadas em diversos problemas, como classificação e segmentação. Porém, quando o número de características é muito elevado, o reconhecimento de padrões pode ser prejudicado. A seleção de características contribui para a solução desse problema, podendo ser empregada tanto para redução da dimensionalidade como também para descobrir quais as melhores características de texturas para o tipo de imagem analisada. O objetivo deste trabalho é avaliar métodos ótimos e subótimos de seleção de características em problemas que envolvem texturas de imagens. Os algoritmos de seleção avaliados foram o branch and bound, a busca exaustiva e o sequential oating forward selection (SFFS). As funções critério empregadas na seleção foram a distância de Jeffries-Matusita e a taxa de acerto do classificador de distância mínima (CDM). As características de texturas empregadas nos experimentos foram obtidas com estatísticas de primeira ordem, matrizes de co-ocorrência e filtros de Gabor. Os experimentos realizados foram a classificação de regiôes de uma foto aérea de plantação de eucalipto, a segmentação não-supervisionada de mosaicos de texturas de Brodatz e a segmentação supervisionada de imagens médicas (MRI do cérebro). O branch and bound é um algoritmo ótimo e mais efiiente do que a busca exaustiva na maioria dos casos. Porém, continua sendo um algoritmo lento. Este trabalho apresenta uma nova estratégia para o branch and bound, nomeada floresta, que melhorou significativamente a eficiência do algoritmo. A avaliação dos métodos de seleção de características mostrou que os melhores subconjuntos foram aqueles obtidos com o uso da taxa de acerto do CDM. A busca exaustiva e o branch and bound, mesmo com a estratégia floresta, foram considerados inviáveis devido ao alto tempo de processamento nos casos em que o número de característica é muito grande. O SFFS apresentou os melhores resultados, pois, além de mais rápido, encontrou as soluções ótimas ou próximas das ótimas. Pôde-se concluir também que a precisão no reconhecimento de padrões aumenta com a redução do número de características e que os melhores subconjuntos freqüentemente são formados por características de texturas obtidas com técnicas diferentes / Texture features are eficient image descriptors and can be employed in a wide range of applications, such as classification and segmentation. However, when the number of features is considerably high, pattern recognition tasks may be compromised. Feature selection helps prevent this problem, as it can be used to reduce data dimensionality and reveal features which best characterise images under investigation. This work aims to evaluate optimal and suboptimal feature selection algorithms in the context of textural features extracted from images. Branch and bound, exhaustive search and sequential floating forward selection (SFFS) were the algorithms investigated. The criterion functions employed during selection were the Jeffries-Matusita (JM) distance and the minimum distance classifier (MDC) accuracy rate. Texture features were computed from first-order statistics, co-occurrence matrices and Gabor filters. Three different experiments have been conducted: classification of aerial picture of eucalyptus plantations, unsupervised segmentation of mosaics of Brodatz texture samples and supervised segmentation of MRI images of the brain. The branch and bound is an optimal algorithm and many times more eficient than exhaustive search. But is still time consuming. This work proposed a novel strategy for the branch and bound algorithm, named forest, which has considerably improved its performance. The evaluation of the feature selection methods has revealed that the best feature subsets were those computed by the MDC accuracy rate criterion function. Exhaustive search and branch and bound approaches have been considered unfeasible, due to their high processing times, especially for high dimensional data. This statement holds even for the branch and bound with the forest strategy. The SFFS approach yielded the best results. Not only was it faster, as it also was capable of finding the optimal or nearly optimal solutions. Finally, it has been observed that the precision of pattern recognition tasks increases as the number of features decreases and that the best feature subsets are those which possess features computed from distinct texture feature methods

Page generated in 0.0771 seconds