• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Recuperação de informação e classificação de entidades organizacionais em textos não estruturados

Frutuoso, Danielle Guedes 28 April 2014 (has links)
Submitted by Haroudo Xavier Filho (haroudo.xavierfo@ufpe.br) on 2015-05-21T18:24:45Z No. of bitstreams: 1 Dissertação Danielle Guedes Frutuoso.pdf: 1821107 bytes, checksum: 27b0bc0583b46c7a6fc0b2951b6887f3 (MD5) / Made available in DSpace on 2015-05-21T18:24:45Z (GMT). No. of bitstreams: 1 Dissertação Danielle Guedes Frutuoso.pdf: 1821107 bytes, checksum: 27b0bc0583b46c7a6fc0b2951b6887f3 (MD5) Previous issue date: 2014-04-28 / A explosão de dados na internet deixou de ter foco apenas em grandes empresas para ser amplamente utilizada por usuários comuns. Esse crescimento elevado traz consigo grandes desafios em relação à disponibilização da informação. A natureza descentralizada e desestruturada na qual esses dados estão disponíveis, tornam a tarefa de encontrar, analisar e sintetizar comentários sobre uma dada empresa, produto ou serviço extremamente complicada, ocasionando resultados de baixa qualidade. Esta pesquisa tem como foco a extração de informação de textos livres gerados pela rede social Twitter, onde na maioria das vezes apresentam uma estrutura linguística irregular. Dentre os diversos trabalhos relacionados à extração de informação podemos destacar o Reconhecimento de Entidades Mencionadas (REM), cujo objetivo consiste em localizar e classificar elementos do texto em categorias pré-definidas como Organizações, Pessoas, Local, etc. Neste trabalho será considerada apenas a categoria Organização, com ênfase em palavras homônimas. O experimento deste trabalho foi dividido em dois cenários diferentes. Ambos utilizam as mesmas características, a diferença entre os cenários é que no primeiro exige o conhecimento do especialista para determinar todos os atributos considerados relevantes para o aprendizado supervisionado. No segundo cenário, um processo automatizado define parte desses atributos. Os experimentos foram realizados usando a ferramenta Weka onde foram avaliados os classificadores: Naive Bayes, Máquinas de Vetores de Suporte (SVM), K-Vizinhos mais Próximos e Árvores de Decisão. Como medidas de desempenho foram analisadas taxas de acerto, precisão, cobertura e medida-F. Apesar dos resultados apresentados pelos classificadores se mostrarem bastante aproximados, o algoritmo K-Vizinhos mais Próximos obteve em boa parte dos testes melhores resultados. Nos dois cenários os resultados chegaram próximos um do outro, porém o primeiro cenário obteve como resultado médio de acerto, um percentual de 91,7% se destacando em relação à média alcançada de 88,9% para a segunda etapa.
2

Reconhecimento de nomes de pessoas e organizações em textos forenses usando uma variação do Modelo Oculto de Markov / Recognizing names of people and organizations in forensic texts using a hidden Markov model variation

Dalben Júnior, Osvaldo 13 December 2011 (has links)
Dissertação (mestrado)—Universidade de Brasilia, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, Programa de Pós-Graduação em Engenharia Elétrica, 2011. / Submitted by Alaíde Gonçalves dos Santos (alaide@unb.br) on 2012-09-18T14:00:45Z No. of bitstreams: 1 2011_OsvaldoDalbenJunior.pdf: 3404533 bytes, checksum: 553bcf63bc1e8bcf2d4970f112a97520 (MD5) / Approved for entry into archive by Leandro Silva Borges(leandroborges@bce.unb.br) on 2012-09-19T21:17:42Z (GMT) No. of bitstreams: 1 2011_OsvaldoDalbenJunior.pdf: 3404533 bytes, checksum: 553bcf63bc1e8bcf2d4970f112a97520 (MD5) / Made available in DSpace on 2012-09-19T21:17:42Z (GMT). No. of bitstreams: 1 2011_OsvaldoDalbenJunior.pdf: 3404533 bytes, checksum: 553bcf63bc1e8bcf2d4970f112a97520 (MD5) / Um dos atuais desafios na área da forense computacional está relacionado à análise de mídias computacionais apreendidas em grande quantidade pelas orças policiais. Os arquivos armazenados nessas mídias podem conter nomes de pessoas e organizações suspeitos, porém desconhecidos pelas equipes de investigação. O presente trabalho propõe a criação de um modelo de Reconhecimento de Entidades Mencionadas (REM) baseado no Modelo Oculto de Markov (HMM) para extrair nomes de pessoas e organizações de textos não estruturados contidos em mídias apreendidas. O modelo proposto, denominado ICCHMM {Identiication-Classification Context HMM é dividido em dois submodelos - identificação e classificação de entidades - e utiliza as informações do contexto das palavras e um gazetteer como forma de obter melhor desempenho. Experimentos foram realizados aplicados a corpora públicos e forenses e os resultados do ICC-HMM superaram os obtidos por sistemas participantes de avaliações conjuntas específicas para o REM no idioma português, o que sugere que o modelo proposto é aplicável ao cenário forense nacional. _______________________________________________________________________________________ ABSTRACT / One of the current challenges in computer forensics is related to the analysis of computer media seized in large quantities by he police. Files stored in these media may contain names of people and organizations suspected, but unknown by the analysis teams. This paper proposes the creation of a named entity recognition (NER) model based on the Hidden Markov Model (HMM) to extract names of people and organizations contained in unstructured text of seized media. The proposed model, called ICC-HMM (Identification - Classification Context HMM) is divided into two sub-models - identification and classification of entities - and uses the context information of words and a gazetteer in order to obtain better performance. Experiments were carried out on forensic corpora and our results outperformed some of the best NER-based systems in Portuguese language. This suggests that the proposed model is applicable in brazilian computer forensics
3

Identificação da cobertura espacial de documentos usando mineração de textos / Identification of spatial coverage documents with mining

Vargas, Rosa Nathalie Portugal 08 August 2012 (has links)
Atualmente, é comum que usuários levem em consideração a localização geográfica dos documentos, é dizer considerar o escopo geográfico que está sendo tratado no contexto do documento, nos processos de Recuperação de Informação. No entanto, os sistemas convencionais de extração de informação que estão baseados em palavras-chave não consideram que as palavras podem representar entidades geográficas espacialmente relacionadas com outras entidades nos documentos. Para resolver esse problema, é necessário viabilizar o georreferenciamento dos textos, ou seja, identificar as entidades geográficas presentes e associá-las com sua correta localização espacial. A identificação e desambiguação das entidades geográficas apresenta desafios importantes, principalmente do ponto de vista linguístico, já que um topônimo, pode possuir variados tipos de ambiguidade associados. Esse problema de ambiguidade causa ruido nos processos de recuperação de informação, já que o mesmo termo pode ter informação relevante ou irrelevante associada. Assim, a principal estratégia para superar os problemas de ambiguidade, compreende a identificação de evidências que auxiliem na identificação e desambiguação das localidades nos textos. O presente trabalho propõe uma metodologia que permite identificar e determinar a cobertura espacial dos documentos, denominada SpatialCIM. A metodologia SpatialCIM tem o objetivo de organizar os processos de resolução de topônimos. Assim, o principal objetivo deste trabalho é avaliar e selecionar técnicas de desambiguação que permitam resolver a ambiguidade dos topônimos nos textos. Para isso, foram propostas e desenvolvidas as abordagens de (1)Desambiguação por Pontos e a (2)Desambiguação Textual e Estrutural. Essas abordagens, exploram duas técnicas diferentes de desambiguação de topônimos, as quais, geram e desambiguam os caminhos geográficos associados aos topônimos reconhecidos para cada documento. Assim, a hipótese desta pesquisa é que o uso das técnicas de desambiguação de topônimos viabilizam uma melhor localização espacial dos documentos. A partir dos resultados obtidos neste trabalho, foi possível demonstrar que as técnicas de desambiguação melhoram a precisão e revocação na classificação espacial dos documentos. Demonstrou-se também o impacto positivo do uso de uma ferramenta linguística no processo de reconhecimento das entidades geográficas. Assim, foi demostrada a utilidade dos processos de desambiguação para a obtenção da cobertura espacial dos documentos / Currently, it is usual that users take into account the geographical localization of the documents in the Information Retrieval process. However, the conventional information retrieval systems based on key-word matching do not consider which words can represent geographical entities that are spatially related to other entities in the documents. To solve this problem, it is necessary to enable the geo-referencing of texts by identifying the geographical entities present in text and associate them with their correct spatial location. The identification and disambiguation of the geographical entities present major challenges mainly from the linguistic point of view, since one location can have different types of associated ambiguity. The ambiguity problem causes noise in the process of information retrieval, since the same term may have relevant or irrelevant information associated. Thus, the main strategy to overcome these problems, include the identification of evidence to assist in the identification and disambiguation of locations in the texts. This study proposes a methodology that allows the identification and spatial localization of the documents, denominated SpatialCIM. The SpatialCIM methodology has the objective to organize the Topônym Resolution process. Therefore the main objective of this study is to evaluate and select disambiguation techniques that allow solving the toponym ambiguity in texts. Therefore, we proposed and developed the approaches of (1) Disambiguation for Points and (2) Textual and Structural Disambiguation. These approaches exploit two different techniques of toponym disambiguation, which generate and desambiguate the associated paths with the recognized geographical toponym for each document. Therefore the hypothesis is, that the use of the toponyms disambiguation techniques enable a better spatial localization of documents. From the results it was possible to demonstrate that the disambiguation techniques improve the precision and recall for the spatial classification of documents. The positive effect of using a linguistic tool for the process of geographical entities recognition was also demonstrated. Thus, it was proved the usefulness of the disambiguation process for obtaining a spatial coverage of the document
4

Identificação da cobertura espacial de documentos usando mineração de textos / Identification of spatial coverage documents with mining

Rosa Nathalie Portugal Vargas 08 August 2012 (has links)
Atualmente, é comum que usuários levem em consideração a localização geográfica dos documentos, é dizer considerar o escopo geográfico que está sendo tratado no contexto do documento, nos processos de Recuperação de Informação. No entanto, os sistemas convencionais de extração de informação que estão baseados em palavras-chave não consideram que as palavras podem representar entidades geográficas espacialmente relacionadas com outras entidades nos documentos. Para resolver esse problema, é necessário viabilizar o georreferenciamento dos textos, ou seja, identificar as entidades geográficas presentes e associá-las com sua correta localização espacial. A identificação e desambiguação das entidades geográficas apresenta desafios importantes, principalmente do ponto de vista linguístico, já que um topônimo, pode possuir variados tipos de ambiguidade associados. Esse problema de ambiguidade causa ruido nos processos de recuperação de informação, já que o mesmo termo pode ter informação relevante ou irrelevante associada. Assim, a principal estratégia para superar os problemas de ambiguidade, compreende a identificação de evidências que auxiliem na identificação e desambiguação das localidades nos textos. O presente trabalho propõe uma metodologia que permite identificar e determinar a cobertura espacial dos documentos, denominada SpatialCIM. A metodologia SpatialCIM tem o objetivo de organizar os processos de resolução de topônimos. Assim, o principal objetivo deste trabalho é avaliar e selecionar técnicas de desambiguação que permitam resolver a ambiguidade dos topônimos nos textos. Para isso, foram propostas e desenvolvidas as abordagens de (1)Desambiguação por Pontos e a (2)Desambiguação Textual e Estrutural. Essas abordagens, exploram duas técnicas diferentes de desambiguação de topônimos, as quais, geram e desambiguam os caminhos geográficos associados aos topônimos reconhecidos para cada documento. Assim, a hipótese desta pesquisa é que o uso das técnicas de desambiguação de topônimos viabilizam uma melhor localização espacial dos documentos. A partir dos resultados obtidos neste trabalho, foi possível demonstrar que as técnicas de desambiguação melhoram a precisão e revocação na classificação espacial dos documentos. Demonstrou-se também o impacto positivo do uso de uma ferramenta linguística no processo de reconhecimento das entidades geográficas. Assim, foi demostrada a utilidade dos processos de desambiguação para a obtenção da cobertura espacial dos documentos / Currently, it is usual that users take into account the geographical localization of the documents in the Information Retrieval process. However, the conventional information retrieval systems based on key-word matching do not consider which words can represent geographical entities that are spatially related to other entities in the documents. To solve this problem, it is necessary to enable the geo-referencing of texts by identifying the geographical entities present in text and associate them with their correct spatial location. The identification and disambiguation of the geographical entities present major challenges mainly from the linguistic point of view, since one location can have different types of associated ambiguity. The ambiguity problem causes noise in the process of information retrieval, since the same term may have relevant or irrelevant information associated. Thus, the main strategy to overcome these problems, include the identification of evidence to assist in the identification and disambiguation of locations in the texts. This study proposes a methodology that allows the identification and spatial localization of the documents, denominated SpatialCIM. The SpatialCIM methodology has the objective to organize the Topônym Resolution process. Therefore the main objective of this study is to evaluate and select disambiguation techniques that allow solving the toponym ambiguity in texts. Therefore, we proposed and developed the approaches of (1) Disambiguation for Points and (2) Textual and Structural Disambiguation. These approaches exploit two different techniques of toponym disambiguation, which generate and desambiguate the associated paths with the recognized geographical toponym for each document. Therefore the hypothesis is, that the use of the toponyms disambiguation techniques enable a better spatial localization of documents. From the results it was possible to demonstrate that the disambiguation techniques improve the precision and recall for the spatial classification of documents. The positive effect of using a linguistic tool for the process of geographical entities recognition was also demonstrated. Thus, it was proved the usefulness of the disambiguation process for obtaining a spatial coverage of the document
5

Reconhecimento de entidades mencionadas em português utilizando aprendizado de máquina / Portuguese named entity recognition using machine learning

Carvalho, Wesley Seidel 24 February 2012 (has links)
O Reconhecimento de Entidades Mencionadas (REM) é uma subtarefa da extração de informações e tem como objetivo localizar e classificar elementos do texto em categorias pré-definidas tais como nome de pessoas, organizações, lugares, datas e outras classes de interesse. Esse conhecimento obtido possibilita a execução de outras tarefas mais avançadas. O REM pode ser considerado um dos primeiros passos para a análise semântica de textos, além de ser uma subtarefa crucial para sistemas de gerenciamento de documentos, mineração de textos, extração da informação, entre outros. Neste trabalho, estudamos alguns métodos de Aprendizado de Máquina aplicados na tarefa de REM que estão relacionados ao atual estado da arte, dentre eles, dois métodos aplicados na tarefa de REM para a língua portuguesa. Apresentamos três diferentes formas de avaliação destes tipos de sistemas presentes na literatura da área. Além disso, desenvolvemos um sistema de REM para língua portuguesa utilizando Aprendizado de Máquina, mais especificamente, o arcabouço de máxima entropia. Os resultados obtidos com o nosso sistema alcançaram resultados equiparáveis aos melhores sistemas de REM para a língua portuguesa desenvolvidos utilizando outras abordagens de aprendizado de máquina. / Named Entity Recognition (NER), a task related to information extraction, aims to classify textual elements according to predefined categories such as names, places, dates etc. This enables the execution of more advanced tasks. NER is a first step towards semantic textual analysis and is also a crucial task for systems of information extraction and other types of systems. In this thesis, I analyze some Machine Learning methods applied to NER tasks, including two methods applied to Portuguese language. I present three ways of evaluating these types of systems found in the literature. I also develop an NER system for the Portuguese language utilizing Machine Learning that entails working with a maximum entropy framework. The results are comparable to the best NER systems for the Portuguese language developed with other Machine Learning alternatives.
6

Tecnologias de codificação assistida para uma classificação internacional de doenças

Abreu, Carla Filipa Moura January 2013 (has links)
Estágio realizado na Fraunhofer - e orientado pela Dra. Liliana Ferreira / Tese de Mestrado Integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 2013
7

Reconhecimento de entidades mencionadas em português utilizando aprendizado de máquina / Portuguese named entity recognition using machine learning

Wesley Seidel Carvalho 24 February 2012 (has links)
O Reconhecimento de Entidades Mencionadas (REM) é uma subtarefa da extração de informações e tem como objetivo localizar e classificar elementos do texto em categorias pré-definidas tais como nome de pessoas, organizações, lugares, datas e outras classes de interesse. Esse conhecimento obtido possibilita a execução de outras tarefas mais avançadas. O REM pode ser considerado um dos primeiros passos para a análise semântica de textos, além de ser uma subtarefa crucial para sistemas de gerenciamento de documentos, mineração de textos, extração da informação, entre outros. Neste trabalho, estudamos alguns métodos de Aprendizado de Máquina aplicados na tarefa de REM que estão relacionados ao atual estado da arte, dentre eles, dois métodos aplicados na tarefa de REM para a língua portuguesa. Apresentamos três diferentes formas de avaliação destes tipos de sistemas presentes na literatura da área. Além disso, desenvolvemos um sistema de REM para língua portuguesa utilizando Aprendizado de Máquina, mais especificamente, o arcabouço de máxima entropia. Os resultados obtidos com o nosso sistema alcançaram resultados equiparáveis aos melhores sistemas de REM para a língua portuguesa desenvolvidos utilizando outras abordagens de aprendizado de máquina. / Named Entity Recognition (NER), a task related to information extraction, aims to classify textual elements according to predefined categories such as names, places, dates etc. This enables the execution of more advanced tasks. NER is a first step towards semantic textual analysis and is also a crucial task for systems of information extraction and other types of systems. In this thesis, I analyze some Machine Learning methods applied to NER tasks, including two methods applied to Portuguese language. I present three ways of evaluating these types of systems found in the literature. I also develop an NER system for the Portuguese language utilizing Machine Learning that entails working with a maximum entropy framework. The results are comparable to the best NER systems for the Portuguese language developed with other Machine Learning alternatives.
8

[en] NAMED ENTITY RECOGNITION FOR PORTUGUESE / [pt] RECONHECIMENTO DE ENTIDADES MENCIONADAS PARA O PORTUGUÊS

DANIEL SPECHT SILVA MENEZES 13 December 2018 (has links)
[pt] A produção e acesso a quantidades imensas dados é um elemento pervasivo da era da informação. O volume de informação disponível é sem precedentes na história da humanidade e está sobre constante processo de expansão. Uma oportunidade que emerge neste ambiente é o desenvolvimento de aplicações que sejam capazes de estruturar conhecimento contido nesses dados. Neste contexto se encaixa a área de Processamento de Linguagem Natural (PLN) - Natural Language Processing (NLP) - , ser capaz de extrair informações estruturadas de maneira eficiente de fontes textuais. Um passo fundamental para esse fim é a tarefa de Reconhecimento de Entidades Mencionadas (ou nomeadas) - Named Entity Recognition (NER) - que consistem em delimitar e categorizar menções a entidades num texto. A construção de sistemas para NLP deve ser acompanhada de datasets que expressem o entendimento humano sobre as estruturas gramaticais de interesse, para que seja possível realizar a comparação dos resultados com o real discernimento humano. Esses datasets são recursos escassos, que requerem esforço humano para sua produção. Atualmente, a tarefa de NER vem sendo abordada com sucesso por meio de redes neurais artificiais, que requerem conjuntos de dados anotados tanto para avaliação quanto para treino. A proposta deste trabalho é desenvolver um dataset de grandes dimensões para a tarefa de NER em português de maneira automatizada, minimizando a necessidade de intervenção humana. Utilizamos recursos públicos como fonte de dados, nominalmente o DBpedia e Wikipédia. Desenvolvemos uma metodologia para a construção do corpus e realizamos experimentos sobre o mesmo utilizando arquiteturas de redes neurais de melhores performances reportadas atualmente. Exploramos diversas modelos de redes neurais, explorando diversos valores de hiperparâmetros e propondo arquiteturas com o foco específico de incorporar fontes de dados diferentes para treino. / [en] The production and access of huge amounts of data is a pervasive element of the Information Age. The volume of availiable data is without precedents in human history and it s in constant expansion. An oportunity that emerges in this context is the development and usage of applicationos that are capable structuring the knowledge of data. In this context fits the Natural Language Processing, being able to extract information efficiently from textual data. A fundamental step for this goal is the task of Named Entity Recognition (NER) which delimits and categorizes the mentions to entities. The development o systems for NLP tasks must be accompanied by datasets produced by humans in order to compare the system with the human discerniment for the NLP task at hand. These datasets are a scarse resource which the construction is costly in terms of human supervision. Recentlly, the NER task has been approached using artificial network models which needs datsets for both training and evaluation. In this work we propose the construction of a datasets for portuguese NER with an automatic approach using public data sources structured according to the principles of SemanticWeb, namely, DBpedia and Wikipédia. A metodology for the construction of this dataset was developed and experiments were performed using both the built dataset and the neural network architectures with the best reported results. Many setups for the experiments were evaluated, we obtained preliminary results for diverse hiperparameters values, also proposing architectures with the specific focus of incorporating diverse data sources for training.

Page generated in 0.1431 seconds