Spelling suggestions: "subject:"reconnaissance automatique dde l'émotions"" "subject:"reconnaissance automatique dde l'émotionnel""
1 |
Configuration et exploitation d'une machine émotionnelleTrabelsi, Amine 11 1900 (has links)
Dans ce travail, nous explorons la faisabilité de doter les machines de la capacité de prédire, dans un contexte d'interaction homme-machine (IHM), l'émotion d'un utilisateur, ainsi que son intensité, de manière instantanée pour une grande variété de situations. Plus spécifiquement, une application a été développée, appelée machine émotionnelle, capable de «comprendre» la signification d'une situation en se basant sur le modèle théorique d'évaluation de l'émotion Ortony, Clore et Collins (OCC). Cette machine est apte, également, à prédire les réactions émotionnelles des utilisateurs, en combinant des versions améliorées des k plus proches voisins et des réseaux de neurones. Une procédure empirique a été réalisée pour l'acquisition des données. Ces dernières ont fourni une connaissance consistante aux algorithmes d'apprentissage choisis et ont permis de tester la performance de la machine. Les résultats obtenus montrent que la machine émotionnelle proposée est capable de produire de bonnes prédictions. Une telle réalisation pourrait encourager son utilisation future dans des domaines exploitant la reconnaissance automatique de l'émotion. / This work explores the feasibility of equipping computers with the ability to predict, in a context of a human computer interaction, the probable user’s emotion and its intensity for a wide variety of emotion-eliciting situations. More specifically, an online framework, the Emotional Machine, is developed enabling computers to «understand» situations using OCC model of emotion and to predict user’s reaction by combining refined versions of Artificial Neural Network and k Nearest Neighbours algorithms. An empirical procedure including a web-based anonymous questionnaire for data acquisition was designed to provide the chosen machine learning algorithms with a consistent knowledge and to test the application’s recognition performance. Results from the empirical investigation show that the proposed Emotional Machine is capable of producing accurate predictions. Such an achievement may encourage future using of our framework for automated emotion recognition in various application fields.
|
2 |
Configuration et exploitation d'une machine émotionnelleTrabelsi, Amine 11 1900 (has links)
Dans ce travail, nous explorons la faisabilité de doter les machines de la capacité de prédire, dans un contexte d'interaction homme-machine (IHM), l'émotion d'un utilisateur, ainsi que son intensité, de manière instantanée pour une grande variété de situations. Plus spécifiquement, une application a été développée, appelée machine émotionnelle, capable de «comprendre» la signification d'une situation en se basant sur le modèle théorique d'évaluation de l'émotion Ortony, Clore et Collins (OCC). Cette machine est apte, également, à prédire les réactions émotionnelles des utilisateurs, en combinant des versions améliorées des k plus proches voisins et des réseaux de neurones. Une procédure empirique a été réalisée pour l'acquisition des données. Ces dernières ont fourni une connaissance consistante aux algorithmes d'apprentissage choisis et ont permis de tester la performance de la machine. Les résultats obtenus montrent que la machine émotionnelle proposée est capable de produire de bonnes prédictions. Une telle réalisation pourrait encourager son utilisation future dans des domaines exploitant la reconnaissance automatique de l'émotion. / This work explores the feasibility of equipping computers with the ability to predict, in a context of a human computer interaction, the probable user’s emotion and its intensity for a wide variety of emotion-eliciting situations. More specifically, an online framework, the Emotional Machine, is developed enabling computers to «understand» situations using OCC model of emotion and to predict user’s reaction by combining refined versions of Artificial Neural Network and k Nearest Neighbours algorithms. An empirical procedure including a web-based anonymous questionnaire for data acquisition was designed to provide the chosen machine learning algorithms with a consistent knowledge and to test the application’s recognition performance. Results from the empirical investigation show that the proposed Emotional Machine is capable of producing accurate predictions. Such an achievement may encourage future using of our framework for automated emotion recognition in various application fields.
|
Page generated in 0.1577 seconds