Spelling suggestions: "subject:"reconnaissance d'écriture manuscrit"" "subject:"reconnaissance d'écriture manuscrito""
1 |
Intégration de connaissances linguistiques pour la reconnaissance de textes manuscrits en-ligneQuiniou, Solen 17 December 2007 (has links) (PDF)
L'objectif de ces travaux de thèse est de construire un système de reconnaissance de phrases, en se basant sur un système de reconnaissance de mots existant. Pour cela, deux axes de recherche sont abordés : la segmentation des phrases en mots ainsi que l'intégration de connaissances linguistiques pour prendre en compte le contexte des phrases. Nous avons étudié plusieurs types de modèles de langage statistiques, en comparant leurs impacts respectifs sur les performances du système de reconnaissance. Nous avons également recherché la meilleure stratégie pour les intégrer efficacement dans le système de reconnaissance global. Une des orginalités de cette étude est l'ajout d'une représentation des différentes hypothèses de phrases sous forme d'un réseau de confusion, afin de pouvoir détecter et corriger les erreurs de reconnaissance restantes. L'utilisation des technique présentées permet de réduire de façon importante le nombre d'erreurs de reconnaissance, parmi les mots des phrases.
|
2 |
Reconnaissance de mots manuscrits cursifs par modèles de Markov cachés en contexte : application au français, à l'anglais et à l'arabeBianne Bernard, Anne-Laure 21 November 2011 (has links) (PDF)
L'objectif de cette thèse est d'élaborer un système de reconnaissance de mots manuscrits pouvant être appris et appliqué sur différents styles d'écriture. L'approche utilisée est une approche analytique: les mots sont découpés en sous-parties (caractères) à modéliser. Le découpage est effectué de manière implicite par l'utilisation de fenêtres glissantes qui permettent de transformer les images de mots en séquences. La méthode choisie pour apprendre les modèles de caractères utilise les modèles de Markov cachés (HMMs). Chaque caractère est représenté par un HMM de type Bakis, ce qui permet d'absorber les variations d'écriture entre scripteurs. Les mots sont reconstruits ensuite par concaténation des modèles qui les composent. Dans cette thèse, le choix est fait de chercher à améliorer la modélisation HMM de caractères en agissant au coeur même des modèles. A cette fin, une nouvelle approche est proposée, qui utilise l'aspect contextuel pour la modélisation : un caractère est modélisé en fonction de son contexte et son modèle est nommé trigraphe. La prise en compte de l'environnement d'un caractère pour sa modélisation implique cependant une multiplication des paramètres HMMs à apprendre sur un nombre souvent restreint de données d'observation. Une méthode originale de regroupement de paramètres est proposée dans ces travaux : le clustering d'états par position à l'aide d'arbres binaires de décision. Ce type de clustering, inédit dans les systèmes de reconnaissance de l'écriture, permet au système de réduire le nombre de paramètres tout en conservant l'un des principaux attraits des HMMs : l'utilisation d'un lexique de test indépendant de celui d'apprentissage.
|
3 |
Des modèles de langage pour la reconnaissance de l'écriture manuscrite / Language Modelling for Handwriting RecognitionSwaileh, Wassim 04 October 2017 (has links)
Cette thèse porte sur le développement d'une chaîne de traitement complète pour réaliser des tâches de reconnaissance d'écriture manuscrite non contrainte. Trois difficultés majeures sont à résoudre: l'étape du prétraitement, l'étape de la modélisation optique et l'étape de la modélisation du langage. Au stade des prétraitements il faut extraire correctement les lignes de texte à partir de l'image du document. Une méthode de segmentation itérative en lignes utilisant des filtres orientables a été développée à cette fin. La difficulté dans l’étape de la modélisation optique vient de la diversité stylistique des scripts d'écriture manuscrite. Les modèles optiques statistiques développés sont des modèles de Markov cachés (HMM-GMM) et les modèles de réseaux de neurones récurrents (BLSTM-CTC). Les réseaux récurrents permettent d’atteindre les performances de l’état de l’art sur les deux bases de référence RIMES (pour le Français) et IAM (pour l’anglais). L'étape de modélisation du langage implique l'intégration d’un lexique et d’un modèle de langage statistique afin de rechercher parmi les hypothèses proposées par le modèle optique, la séquence de mots (phrase) la plus probable du point de vue linguistique. La difficulté à ce stade est liée à l’obtention d’un modèle de couverture lexicale optimale avec un minimum de mots hors vocabulaire (OOV). Pour cela nous introduisons une modélisation en sous-unités lexicales composée soit de syllabes soit de multigrammes. Ces modèles couvrent efficacement une partie importante des mots hors vocabulaire. Les performances du système de reconnaissance avec les unités sous-lexicales dépassent les performances des systèmes de reconnaissance traditionnelles de mots ou de caractères en présence d’un fort taux de mots hors lexique. Elles sont équivalentes aux modèles traditionnels en présence d’un faible taux de mots hors lexique. Grâce à la taille compacte du modèle de langage reposant sur des unités sous-lexicales, un système de reconnaissance multilingue unifié a été réalisé. Le système multilingue unifié améliore les performances de reconnaissance par rapport aux systèmes spécialisés dans chaque langue, notamment lorsque le modèle optique unifié est utilisé. / This thesis is about the design of a complete processing chain dedicated to unconstrained handwriting recognition. Three main difficulties are adressed: pre-processing, optical modeling and language modeling. The pre-processing stage is related to extracting properly the text lines to be recognized from the document image. An iterative text line segmentation method using oriented steerable filters was developed for this purpose. The difficulty in the optical modeling stage lies in style diversity of the handwriting scripts. Statistical optical models are traditionally used to tackle this problem such as Hidden Markov models (HMM-GMM) and more recently recurrent neural networks (BLSTM-CTC). Using BLSTM we achieve state of the art performance on the RIMES (for French) and IAM (for English) datasets. The language modeling stage implies the integration of a lexicon and a statistical language model to the recognition processing chain in order to constrain the recognition hypotheses to the most probable sequence of words (sentence) from the language point of view. The difficulty at this stage is related to the finding the optimal vocabulary with minimum Out-Of-Vocabulary words rate (OOV). Enhanced language modeling approaches has been introduced by using sub-lexical units made of syllables or multigrams. The sub-lexical units cover an important portion of the OOV words. Then the language coverage depends on the domain of the language model training corpus, thus the need to train the language model with in domain data. The recognition system performance with the sub-lexical units outperformes the traditional recognition systems that use words or characters language models, in case of high OOV rates. Otherwise equivalent performances are obtained with a compact sub-lexical language model. Thanks to the compact lexicon size of the sub-lexical units, a unified multilingual recognition system has been designed. The unified system performance have been evaluated on the RIMES and IAM datasets. The unified multilingual system shows enhanced recognition performance over the specialized systems, especially when a unified optical model is used.
|
Page generated in 0.1207 seconds