Spelling suggestions: "subject:"record matching"" "subject:"secord matching""
1 |
Bayesian Logistic Regression with Jaro-Winkler String Comparator Scores Provides Sizable Improvement in Probabilistic Record MatchingJann, Dominic 1983- 14 March 2013 (has links)
Record matching is a fundamental and ubiquitous part of today?s society. Anything from typing in a password in order to access your email to connecting existing health records in California with new health records in New York requires matching records together. In general, there are two types of record matching algorithms: deterministic, a more rules-based approach, and probabilistic, a model-based approach. Both types have their advantages and disadvantages. If the amount of data is relatively small, deterministic algorithms yield very high success rates. However, the number of common mistakes, and subsequent rules, becomes astronomically large as the sizes of the datasets increase. This leads to a highly labor-intensive process updating and maintaining the matching algorithm. On the other hand, probabilistic record matching implements a mathematical model that can take into account keying mistakes, does not require as much maintenance and over- head, and provides a probability that two particular entities should be linked. At the same time, as a model, assumptions need to be met, fitness has to be assessed, and predictions can be incorrect. Regardless of the type of algorithm, nearly all utilize a 0/1 field-matching structure, including the Fellegi-Sunter algorithm from 1969. That is to say that either the fields match entirely, or they do not match at all. As a result, typographical errors can get lost and false negatives can result. My research has yielded that using Jaro-Winkler string comparator scores as predictors to a Bayesian logistic regression model in lieu of a restrictive binary structure yields marginal improvement over current methodologies.
|
2 |
Data Integration: Techniques and EvaluationHackl, Peter, Denk, Michaela January 2004 (has links) (PDF)
Within the DIECOFIS framework, ec3, the Division of Business
Statistics from the Vienna University of Economics and Business
Administration and ISTAT worked together to find methods to create a
comprehensive database of enterprise data required for taxation microsimulations
via integration of existing disparate enterprise data sources. This
paper provides an overview of the broad spectrum of investigated
methodology (including exact and statistical matching as well as
imputation) and related statistical quality indicators, and emphasises the
relevance of data integration, especially for official statistics, as a means of
using available information more efficiently and improving the quality of a
statistical agency's products. Finally, an outlook on an empirical study
comparing different exact matching procedures in the maintenance of
Statistics Austria's Business Register is presented.
|
3 |
String Matching Techniques: An Empirical Assessment Based on Statistics Austria's Business RegisterDenk, Michaela, Hackl, Peter, Rainer, Norbert January 2005 (has links) (PDF)
The maintenance and updating of Statistics Austria's business register
requires a regularly matching of the register against other data sources;
one of them is the register of tax units of the Austrian Federal Ministry of
Finance. The matching process is based on string comparison via bigrams of
enterprise names and addresses, and a quality class approach assigning pairs
of register units into classes of different compliance (i.e., matching quality)
based on bigram similarity values and the comparison of other matching variables,
like the NACE code or the year of foundation.
Based on methodological research concerning matching techniques carried
out in the DIECOFIS project, an empirical comparison of the bigram method
and other string matching techniques was conducted: the edit distance, the
Jaro algorithm and the Jaro-Winkler algorithm, the longest common subsequence
and the maximal match were selected as appropriate alternatives and
evaluated in the study.
This paper briefly introduces Statistics Austria's business register and the corresponding
maintenance process and reports on the results of the empirical
study.
|
4 |
Avaliação experimental de uma técnica de padronização de escores de similaridade / Experimental evaluation of a similarity score standardization techniqueNunes, Marcos Freitas January 2009 (has links)
Com o crescimento e a facilidade de acesso a Internet, o volume de dados cresceu muito nos últimos anos e, consequentemente, ficou muito fácil o acesso a bases de dados remotas, permitindo integrar dados fisicamente distantes. Geralmente, instâncias de um mesmo objeto no mundo real, originadas de bases distintas, apresentam diferenças na representação de seus valores, ou seja, os mesmos dados no mundo real podem ser representados de formas diferentes. Neste contexto, surgiram os estudos sobre casamento aproximado utilizando funções de similaridade. Por consequência, surgiu a dificuldade de entender os resultados das funções e selecionar limiares ideais. Quando se trata de casamento de agregados (registros), existe o problema de combinar os escores de similaridade, pois funções distintas possuem distribuições diferentes. Com objetivo de contornar este problema, foi desenvolvida em um trabalho anterior uma técnica de padronização de escores, que propõe substituir o escore calculado pela função de similaridade por um escore ajustado (calculado através de um treinamento), o qual é intuitivo para o usuário e pode ser combinado no processo de casamento de registros. Tal técnica foi desenvolvida por uma aluna de doutorado do grupo de Banco de Dados da UFRGS e será chamada aqui de MeaningScore (DORNELES et al., 2007). O presente trabalho visa estudar e realizar uma avaliação experimental detalhada da técnica MeaningScore. Com o final do processo de avaliação aqui executado, é possível afirmar que a utilização da abordagem MeaningScore é válida e retorna melhores resultados. No processo de casamento de registros, onde escores de similaridades distintos devem ser combinados, a utilização deste escore padronizado ao invés do escore original, retornado pela função de similaridade, produz resultados com maior qualidade. / With the growth of the Web, the volume of information grew considerably over the past years, and consequently, the access to remote databases became easier, which allows the integration of distributed information. Usually, instances of the same object in the real world, originated from distinct databases, present differences in the representation of their values, which means that the same information can be represented in different ways. In this context, research on approximate matching using similarity functions arises. As a consequence, there is a need to understand the result of the functions and to select ideal thresholds. Also, when matching records, there is the problem of combining the similarity scores, since distinct functions have different distributions. With the purpose of overcoming this problem, a previous work developed a technique that standardizes the scores, by replacing the computed score by an adjusted score (computed through a training), which is more intuitive for the user and can be combined in the process of record matching. This work was developed by a Phd student from the UFRGS database research group, and is referred to as MeaningScore (DORNELES et al., 2007). The present work intends to study and perform an experimental evaluation of this technique. As the validation shows, it is possible to say that the usage of the MeaningScore approach is valid and return better results. In the process of record matching, where distinct similarity must be combined, the usage of the adjusted score produces results with higher quality.
|
5 |
Avaliação experimental de uma técnica de padronização de escores de similaridade / Experimental evaluation of a similarity score standardization techniqueNunes, Marcos Freitas January 2009 (has links)
Com o crescimento e a facilidade de acesso a Internet, o volume de dados cresceu muito nos últimos anos e, consequentemente, ficou muito fácil o acesso a bases de dados remotas, permitindo integrar dados fisicamente distantes. Geralmente, instâncias de um mesmo objeto no mundo real, originadas de bases distintas, apresentam diferenças na representação de seus valores, ou seja, os mesmos dados no mundo real podem ser representados de formas diferentes. Neste contexto, surgiram os estudos sobre casamento aproximado utilizando funções de similaridade. Por consequência, surgiu a dificuldade de entender os resultados das funções e selecionar limiares ideais. Quando se trata de casamento de agregados (registros), existe o problema de combinar os escores de similaridade, pois funções distintas possuem distribuições diferentes. Com objetivo de contornar este problema, foi desenvolvida em um trabalho anterior uma técnica de padronização de escores, que propõe substituir o escore calculado pela função de similaridade por um escore ajustado (calculado através de um treinamento), o qual é intuitivo para o usuário e pode ser combinado no processo de casamento de registros. Tal técnica foi desenvolvida por uma aluna de doutorado do grupo de Banco de Dados da UFRGS e será chamada aqui de MeaningScore (DORNELES et al., 2007). O presente trabalho visa estudar e realizar uma avaliação experimental detalhada da técnica MeaningScore. Com o final do processo de avaliação aqui executado, é possível afirmar que a utilização da abordagem MeaningScore é válida e retorna melhores resultados. No processo de casamento de registros, onde escores de similaridades distintos devem ser combinados, a utilização deste escore padronizado ao invés do escore original, retornado pela função de similaridade, produz resultados com maior qualidade. / With the growth of the Web, the volume of information grew considerably over the past years, and consequently, the access to remote databases became easier, which allows the integration of distributed information. Usually, instances of the same object in the real world, originated from distinct databases, present differences in the representation of their values, which means that the same information can be represented in different ways. In this context, research on approximate matching using similarity functions arises. As a consequence, there is a need to understand the result of the functions and to select ideal thresholds. Also, when matching records, there is the problem of combining the similarity scores, since distinct functions have different distributions. With the purpose of overcoming this problem, a previous work developed a technique that standardizes the scores, by replacing the computed score by an adjusted score (computed through a training), which is more intuitive for the user and can be combined in the process of record matching. This work was developed by a Phd student from the UFRGS database research group, and is referred to as MeaningScore (DORNELES et al., 2007). The present work intends to study and perform an experimental evaluation of this technique. As the validation shows, it is possible to say that the usage of the MeaningScore approach is valid and return better results. In the process of record matching, where distinct similarity must be combined, the usage of the adjusted score produces results with higher quality.
|
6 |
Avaliação experimental de uma técnica de padronização de escores de similaridade / Experimental evaluation of a similarity score standardization techniqueNunes, Marcos Freitas January 2009 (has links)
Com o crescimento e a facilidade de acesso a Internet, o volume de dados cresceu muito nos últimos anos e, consequentemente, ficou muito fácil o acesso a bases de dados remotas, permitindo integrar dados fisicamente distantes. Geralmente, instâncias de um mesmo objeto no mundo real, originadas de bases distintas, apresentam diferenças na representação de seus valores, ou seja, os mesmos dados no mundo real podem ser representados de formas diferentes. Neste contexto, surgiram os estudos sobre casamento aproximado utilizando funções de similaridade. Por consequência, surgiu a dificuldade de entender os resultados das funções e selecionar limiares ideais. Quando se trata de casamento de agregados (registros), existe o problema de combinar os escores de similaridade, pois funções distintas possuem distribuições diferentes. Com objetivo de contornar este problema, foi desenvolvida em um trabalho anterior uma técnica de padronização de escores, que propõe substituir o escore calculado pela função de similaridade por um escore ajustado (calculado através de um treinamento), o qual é intuitivo para o usuário e pode ser combinado no processo de casamento de registros. Tal técnica foi desenvolvida por uma aluna de doutorado do grupo de Banco de Dados da UFRGS e será chamada aqui de MeaningScore (DORNELES et al., 2007). O presente trabalho visa estudar e realizar uma avaliação experimental detalhada da técnica MeaningScore. Com o final do processo de avaliação aqui executado, é possível afirmar que a utilização da abordagem MeaningScore é válida e retorna melhores resultados. No processo de casamento de registros, onde escores de similaridades distintos devem ser combinados, a utilização deste escore padronizado ao invés do escore original, retornado pela função de similaridade, produz resultados com maior qualidade. / With the growth of the Web, the volume of information grew considerably over the past years, and consequently, the access to remote databases became easier, which allows the integration of distributed information. Usually, instances of the same object in the real world, originated from distinct databases, present differences in the representation of their values, which means that the same information can be represented in different ways. In this context, research on approximate matching using similarity functions arises. As a consequence, there is a need to understand the result of the functions and to select ideal thresholds. Also, when matching records, there is the problem of combining the similarity scores, since distinct functions have different distributions. With the purpose of overcoming this problem, a previous work developed a technique that standardizes the scores, by replacing the computed score by an adjusted score (computed through a training), which is more intuitive for the user and can be combined in the process of record matching. This work was developed by a Phd student from the UFRGS database research group, and is referred to as MeaningScore (DORNELES et al., 2007). The present work intends to study and perform an experimental evaluation of this technique. As the validation shows, it is possible to say that the usage of the MeaningScore approach is valid and return better results. In the process of record matching, where distinct similarity must be combined, the usage of the adjusted score produces results with higher quality.
|
7 |
Data Integration and Record Matching: An Austrian Contribution to Research in Official StatisticsDenk, Michaela, Hackl, Peter January 2003 (has links) (PDF)
Data integration techniques are one of the core elements of
DIECOFIS, an EU-funded international research project that aims at
developing a methodology for the construction of a system of indicators on
competitiveness and fiscal impact on enterprise performance. Data
integration is also of major interest for official statistics agencies as a means
of using available information more efficiently and improving the quality of
the agency's products. The Austrian member of the project consortium
comprises university departments, representatives from the Bundesanstalt
Statistik Austria, from the Statistical Department of the Austrian Economic
Chamber, and from ec3, a non-profit research corporation. This paper gives
a short report on DIECOFIS in general and on the Austrian contribution to
the project, mainly dealing with data integration methodology. Various
papers that have been read at the DIECOFIS workshop last November in
Vienna, will be published as a Special Issue of the Austrian Journal of
Statistics.
|
8 |
Přibližná shoda znakových řetězců a její aplikace na ztotožňování metadat vědeckých publikací / Approximate equality of character strings and its application to record linkage in metadata of scientific publicationsDobiášovský, Jan January 2020 (has links)
The thesis explores the application of approximate string matching in scientific publication record linkage process. An introduction to record matching along with five commonly used metrics for string distance (Levenshtein, Jaro, Jaro-Winkler, Cosine distances and Jaccard coefficient) are provided. These metrics are applied on publication metadata from V3S current research information system of the Czech Technical University in Prague. Based on the findings, optimal thresholds in the F1, F2 and F3-measures are determined for each metric.
|
Page generated in 0.0664 seconds