Spelling suggestions: "subject:"recruitmentâenvironment"" "subject:"creativerecruitment""
1 |
Analysis of morphology and RecDer-induced damage of an epithelial cell monolayer in a biomimetic airway using electric cell substrate impedance sensingJanuary 2019 (has links)
archives@tulane.edu / Acute respiratory distress syndrome (ARDS) is a life-threatening, non-carcinogenic inflammatory pulmonary conditions characterized by the collection of fluids in the air sacs of the lungs. When fluid-filled airways are ventilated, the stresses of repetitive recruitment-decruitment (Rec-Der) causes cellular damage to the epithelial surface, leading to ventilator induced lung injury (VILI). The objective of this study was to establish a foundation for use of electric cell-substance impedance sensing (ECIS) in real-time analysis of cell membrane morphology and RecDer-induced damage. NCI H441 papillary adenocarcinoma human pulmonary epithelial cells are cultured onto custom 1F8x10E PC Flow Array. 10mM cysteine and 1% gelatin surface treatments demonstrated strong results for improved cell-substrate adhesion strength. RecDer insults were introduced at a velocity of 0.5mm/s through FBS-enhanced RPMI164 growth media. Experimental trials for 0 (n=1), 1 (n=1), 5 (n=1), 10 (n=1), 20 (n=7), and 50 (n=1) RecDer insults were analyzed using Annexin-V/PI flow cytometry; results showed monolayer health of 97.76%, 93.152%, 91.801%, 72.495%, 66.88% and 60.812% respectively. Trials for 20 (n=1), 30 (n=1), and 40 (n=1) RecDer insults were analyzed using ECIS; Frequency-dependent impedance modeling of the acquired data suggested increased damage to both cell-cell junction health and cell membrane integrity with increased RecDer insults. Results established a strong foundation for ECIS analysis of RecDer-induced monolayer damage. / 1 / Joshua Erwa Yao
|
2 |
Periodic Variable Mechanical Ventilation and Dynamics of Recruitment and De-recruitment in Experimental Acute Respiratory Distress SyndromeHuhle, Robert 09 December 2019 (has links)
Background
Controlled mechanical ventilation with randomly variable tidal volume patterns has been shown to improve gas exchange and respiratory system mechanics compared to conventional ventilation in numerous experimental models of acute respiratory distress syndrome (ARDS). Multiple mechanisms have been proposed to explain this phenomenon called stochastic resonance. The recruitment of collapsed lung regions has been proposed as the dominant mechanism, but the role of respiratory system recruitment and de-recruitment dynamics during variable ventilation and the influence of periodic instead of random variation has not been elucidated.
Objectives
The primary objective of this thesis was to investigate the effects of periodic tidal volume patterns during variable ventilation on functional parameters with a special focus on gas exchange, respiratory system mechanics and cardiovascular interactions. Further aims were to elucidate the relationship between recruitment and de-recruitment dynamics and recruitment effects of random variable ventilation as well as the impact of an excessive increase in pattern period during variable ventilation on respiratory system mechanics. Finally, the relationship between recruitment effects during variable ventilation and the recruitment and de-recruitment dynamics as well as the ability of random variable ventilation to prevent de-recruitment are to be clarified.
Methods
Recruitment and de-recruitment dynamics were investigated based on the analysis of the time course of dynamic respiratory system elastance in a double-hit model of ARDS in pigs, a model of lung inflammation in rats, and in silico. The effects of periodic variable ventilation were studied for a wide range of pattern periods using a non-linear computational model of respiratory system mechanics, and in two experimental studies: Partial pressure of oxygen in arterial blood (PaO2) was the primary outcome of the longitudinal study during six hours of therapy in a double-hit model of ARDS in pigs. A cross-over study in a hydrochloric acid-induced model of ARDS in rats was performed to investigate the effects of periodic variable ventilation on baroreflex and respiratory sinus arrhythmia in context of the improvement of the primary end-point PaO2. In both studies, tidal volume patterns were chosen to have main periods overlapping with the dynamics of cardiovascular and respiratory sub-systems.
Results and Discussion
Periodic variable ventilation, but not random variable ventilation, improved PaO2 compared to conventional ventilation in the double hit model of ARDS. In both experimental studies, variable ventilation independent of pattern period improved respiratory system elastance. The study in silico indicated that periodic patterns have no additional positive effect on respiratory system mechanics compared to random patterns, but will attenuate recruitment for an excessive increase in pattern period. Baroreflex and respiratory sinus arrhythmia were affected by periodic tidal volume patterns in the acid-induced ARDS model; however, pattern period was associated with a decrease in PaO2. Recruitment and de-recruitment dynamics in the experimental model were similar to values derived by analysis of dynamic computed tomography according to literature. In the computational study, re-cruitment during random variable ventilation was maximised for specific values of recruitment and de-recruitment dynamics. Recruitment dynamics were lower during random variable ventilation compared to conventional recruitment manoeuvres, however in the range of de-recruitment dynamics of the respective model. Consequently, random variable ventilation with a coefficient of variation of 30 % was sufficient to prevent an increase of respiratory system elastance during ventilation in the study on acute lung inflammation in rats.
Conclusion
The asymmetry between recruitment and de-recruitment dynamics, which could be quantified by the analysis of the time course of dynamic elastance, was associated with recruitment during random variable ventilation in numerical simulations. Periodic variable ventilation improved arterial oxygenation to a clinically relevant extent without concomitant improvement of lung recruitment compared to random variable ventilation in a double-hit model of ARDS. Cardiovascular-respiratory interactions and asymmetry of recruitment and de-recruitment dynamics were not associated with this improvement. / Hintergrund
In zahlreichen experimentellen Modellen des Akuten Atemnotsyndroms (ARDS) konnte gezeigt werden, dass die kontrollierte maschinelle Beatmung mit zufällig variablen Tidalvolumen pro Atemzug den Gasaustausch und die Atemmechanik im Vergleich zur konventionellen maschinellen Beatmung deutlich verbessert. Es wurden mehrere Mechanismen zur Erklärung dieses Phänomens, der Stochastischen Resonanz, vorgeschlagen. Die Wiedereröffnung kollabierter Lungenareale (Rekrutierung) ist dabei als dominanter Mechanismus der variablen Beatmung identifiziert wurden. Die Rolle der Dynamik von Rekrutierung und Derekrutierung sowie der Einfluss von Periodizität an Stelle von Zufälligkeit in der Sequenz der Tidalvolumina während Zufälliger Variabler Maschineller Beatmung (ZVB) wurde bisher lediglich in numerischen Simulationen evaluiert.
Fragestellung
Hauptziel dieser Arbeit war es, die Auswirkungen der Periodischen Variablen Maschinellen Beatmung (PVB) auf Gasaustausch, Mechanik des Respiratorischen Systems sowie Kardiovaskulärer Wechselwirkungen zu untersuchen. Ferner sollten mögliche Mechanismen der PVB identifiziert werden. Der Zusammenhang zwischen der Rekrutierungsdynamik und den Rekrutierungseffekten der ZVB sowie den Auswirkungen einer übermäßigen Erhöhung der Periodendauer während der PVB auf die Mechanik des Respiratorischen System war ebenfalls zu untersuchen. Ferner war der Zusammenhang zwischen den Rekrutierungseffekten bei der ZVB und der Dynamik der Rekrutierung / Derekrutierung des Respiratorischen Systems zu untersuchen.
Material und Methoden
In einem nichtlinearen numerischen Modell der Atemmechanik wurden die Auswirkungen der PVB für einen breiten Bereich von Periodendauern untersucht. Die Dynamik der Rekrutierung und Derekrutierung der Lunge wurde basierend auf der Analyse des Zeitverlaufs der dynamischen Elastance des Respiratorischen Systems in einem Doppelhit-Modell des ARDS im Schwein, einem Modell der Lungenentzündung in der Ratte sowie in silico untersucht. Die Effekte der PVB auf Gasaustausch und Atemmechanik wurden in zwei experimentelle Studien in verschiedenen Modellen des experimentellen ARDS untersucht: Der Partialdruck von Sauerstoff im arteriellen Blut (PaO2 ) war die primäre Zielgröße in der Längsschnittuntersuchung während der sechsstündigen Therapie des experimentellen ARDS am Hausschwein, welches induziert wurde durch wiederholte Auswaschung von Surfaktant mit anschließender beatmungsinduzierter Lungenschädigung. In einer Cross-over-Studie an einem salzsäureinduzierten Modell des ARDS in Ratten wurden die Auswirkungen der PVB auf Baroreflex- und respiratorische Sinusarrhythmie im Zusammenhang mit dem primären Endpunkt PaO2 untersucht.
Ergebnisse und Diskussion
PVB jedoch nicht die ZVB, verbesserte den PaO2 im Vergleich zur konventionellen maschinellen Beatmung im Doppelhit-Modell des ARDS während sechstündiger Therapie. In beiden Studien verbesserte die PVB unabhängig von der Periodendauer die Elastance des Respiratorischen Systems. Die Simulationen am Computermodell bestätigten, dass periodische Muster keinen zusätzlichen positiven Effekt auf die Mechanik des Atmungssystems im Vergleich zu zufälligen Mustern haben, aber die Rekrutierung während Variabler Maschineller Beatmung für eine übermäßige Erhöhung der Periodendauer abschwächen können. Baroreflex und Respiratorische Sinusarrhythmie wurden durch periodische Sequenz aufeinander folgender Tidalvolumina im säure-induzierten ARDS-Modell beeinflusst, jedoch war die Musterperiode mit einem Rückgang des PaO2 assoziiert. Die im experimentellen Modell bestimmte Dynamik der Rekrutierung und Derekrutierung bestätigte aus der Literatur bekannte Werte, die durch die Analyse der dynamischen Computertomographie gewonnen wurden. In der numerischen Modell-Studie zeigte sich, dass die Rekrutierung während der ZVB für bestimmte Verhältnisse zwischen Rekrutierungs- und Derekrutierungsdynamik (Asymmetrie) maximiert werden. Die Dynamik der Rekrutierung war bei der ZVB im Vergleich zu herkömmlichen Rekrutierungsmanövern geringer, jedoch innerhalb des Wertebereichs der Dynamik der Rekrutierung des jeweiligen Modells. Folglich konnte durch ZVB mit einem Variationskoeffizienten von 30 % die Derekru-
tierung der Lunge in einem Modell der akuten Lungenentzündung verhindert werden.
Schlussfolgerung
Die Asymmetrie zwischen der Dynamik der Rekrutierung und Derekrutierung der Lunge, die durch die Analyse des Zeitverlaufs der dynamischen Elastance quantifiziert werden konnte, war mit der Rekrutierung während der Zufälligen Variablen Beatmung in numerischen Simulationen assoziiert.
Die Periodisch Variable Beatmung verbesserte die arterielle Oxygenierung in einem klinisch relevanten Umfang ohne gleichzeitige Verbesserung der Lungenrekrutierung im Vergleich zur Zufälligen Variablen Beatmung in einem Doppelhit-Modell des ARDS am Schwein. Weder Kardiovaskulär-respiratorische Wechselwirkungen noch die Asymmetrien der Rekrutierungs- und Derekruitierungsdynamik standen mit dieser Verbesserung im Zusammenhang.
|
Page generated in 0.3436 seconds