• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Le motif d’empaquetage le long du sillon: une nouvelle entité structurale récurrente dans les ARN ribosomiques

Gagnon, Matthieu 12 1900 (has links)
La plupart des molécules d’ARN doivent se replier en structure tertiaire complexe afin d’accomplir leurs fonctions biologiques. Cependant, les déterminants d’une chaîne de polynucléotides qui sont nécessaires à son repliement et à ses interactions avec d’autres éléments sont essentiellement inconnus. L’établissement des relations structure-fonction dans les grandes molécules d’ARN passe inévitablement par l’analyse de chaque élément de leur structure de façon individuelle et en contexte avec d’autres éléments. À l’image d’une construction d’immeuble, une structure d’ARN est composée d’unités répétitives assemblées de façon spécifique. Les motifs récurrents d’ARN sont des arrangements de nucléotides retrouvés à différents endroits d’une structure tertiaire et possèdent des conformations identiques ou très similaires. Ainsi, une des étapes nécessaires à la compréhension de la structure et de la fonction des molécules d’ARN consiste à identifier de façon systématique les motifs récurrents et d’en effectuer une analyse comparative afin d’établir la séquence consensus. L’analyse de tous les cas d’empaquetage de doubles hélices dans la structure du ribosome a permis l’identification d’un nouvel arrangement nommé motif d’empaquetage le long du sillon (AGPM) (along-groove packing motif). Ce motif est retrouvé à 14 endroits dans la structure du ribosome de même qu’entre l’ARN ribosomique 23S et les molécules d’ARN de transfert liées aux sites ribosomaux P et E. Le motif se forme par l’empaquetage de deux doubles hélices via leur sillon mineur. Le squelette sucre-phosphate d’une hélice voyage le long du sillon mineur de l’autre hélice et vice versa. Dans chacune des hélices, la région de contact comprend quatre paires de bases. L’empaquetage le plus serré est retrouvé au centre de l’arrangement où l’on retrouve souvent une paire de bases GU dans une hélice interagissant avec une paire de bases Watson-Crick (WC) dans l’autre hélice. Même si la présence des paires de bases centrales GU versus WC au centre du motif augmente sa stabilité, d’autres alternatives existent pour différents représentants du motif. L’analyse comparative de trois librairies combinatoires de gènes d’AGPM, où les paires de bases centrales ont été variées de manière complètement aléatoire, a montré que le contexte structural influence l’étendue de la variabilité des séquences de nucléotides formant les paires de bases centrales. Le fait que l’identité des paires de bases centrales puisse varier suggérait la présence d’autres déterminants responsables au maintien de l’intégrité du motif. L’analyse de tous les contacts entre les hélices a révélé qu’en dehors du centre du motif, les interactions entre les squelettes sucre-phosphate s’effectuent via trois contacts ribose-ribose. Pour chacun de ces contacts, les riboses des nucléotides qui interagissent ensemble doivent adopter des positions particulières afin d’éviter qu’ils entrent en collision. Nous montrons que la position de ces riboses est modulée par des conformations spécifiques des paires de bases auxquelles ils appartiennent. Finalement, un autre motif récurrent identifié à l’intérieur même de la structure de trois cas d’AGPM a été nommé « adenosine-wedge ». Son analyse a révélé que ce dernier est lui-même composé d’un autre arrangement, nommé motif triangle-NAG (NAG-triangle). Nous montrons que le motif « adenosine-wedge » représente un arrangement complexe d’ARN composé de quatre éléments répétitifs, c’est-à-dire des motifs AGPM, « hook-turn », « A-minor » et triangle-NAG. Ceci illustre clairement l’arrangement hiérarchique des structures d’ARN qui peut aussi être observé pour d’autres motifs d’ARN. D’un point de vue plus global, mes résultats enrichissent notre compréhension générale du rôle des différents types d’interactions tertiaires dans la formation des molécules d’ARN complexes. / Most RNA molecules have to adopt a complex tertiary structure to accomplish their biological functions. However, the important determinants of a polynucleotide chain that are required for its proper folding and its interactions with other elements are essentially unknown. The establishment of structure-function relationships in large RNA molecules goes inevitably through the analysis of each element of their structure separately and in context with other elements. Like a building, an RNA structure is built of repetitive pieces that are glued together in a specific way. These repetitive elements, instead of being bricks, are recurrent motifs. Recurrent RNA motifs are arrangements of nucleotides found in different parts of a tertiary structure and have identical or very similar conformations. Thus, a necessary step toward the understanding of RNA structure and function consists in the systematic identification of recurrent motifs, followed by their comparative analysis and establishment of their sequence consensus. The analysis of all instances of helical packing within the ribosome structure led to the identification of a new structural arrangement, named the along-groove packing motif (AGPM), which is found in 14 places of the ribosome structure as well as between the 23S ribosomal RNA and the transfer RNA molecules bound to the P and E sites. The motif is formed by the packing of two double helices via their minor grooves. The sugar-phosphate backbone of one helix goes along the minor groove of the other helix and vice versa. In each helix, the contact region includes four base pairs. The closest packing occurs in the center where one can often see a GU base pair packed against a WC base pair. While the presence of the central base pairs GU versus WC in the core of the motif enhances its stability, other alternatives are also present among available structures of the motif. A comparative analysis of three different combinatorial gene libraries of AGPM, in which the central base pairs were fully randomized, shows that the structural context influences the scope of nucleotide sequence variability of the central base pairs. The fact that the identity of the central base pairs can vary suggested that there are other determinants responsible of the motif’s integrity. Analysis of all other inter-helix contacts has shown that outside the center of the motif the interactions between backbones are made via three ribose-ribose contacts. Within each of these contacts, the riboses of the nucleotides that are in touch adopt particular positions in order to provide for collision-free interactions between them. We show that the position of these riboses is modulated by the specific base pair conformation in which it belongs. Finally, another recurrent arrangement that occurs within the structure of three cases of AGPM was identified and called the adenosine-wedge. Analysis has shown that the latter motif is itself composed of a smaller arrangement, called the NAG-triangle motif. We show that the adenosine-wedge motif represents a complex RNA arrangement composed of four repetitive elements, AGPM, the hook-turn, the A-minor and the NAG-triangle, which clearly illustrates the hierarchical organisation of the structure that could also occur in other RNA motifs as well. Altogether, my results enrich our general understanding of the role of different types of tertiary interactions in the formation of large RNA molecules.
2

Le motif d’empaquetage le long du sillon: une nouvelle entité structurale récurrente dans les ARN ribosomiques

Gagnon, Matthieu 12 1900 (has links)
La plupart des molécules d’ARN doivent se replier en structure tertiaire complexe afin d’accomplir leurs fonctions biologiques. Cependant, les déterminants d’une chaîne de polynucléotides qui sont nécessaires à son repliement et à ses interactions avec d’autres éléments sont essentiellement inconnus. L’établissement des relations structure-fonction dans les grandes molécules d’ARN passe inévitablement par l’analyse de chaque élément de leur structure de façon individuelle et en contexte avec d’autres éléments. À l’image d’une construction d’immeuble, une structure d’ARN est composée d’unités répétitives assemblées de façon spécifique. Les motifs récurrents d’ARN sont des arrangements de nucléotides retrouvés à différents endroits d’une structure tertiaire et possèdent des conformations identiques ou très similaires. Ainsi, une des étapes nécessaires à la compréhension de la structure et de la fonction des molécules d’ARN consiste à identifier de façon systématique les motifs récurrents et d’en effectuer une analyse comparative afin d’établir la séquence consensus. L’analyse de tous les cas d’empaquetage de doubles hélices dans la structure du ribosome a permis l’identification d’un nouvel arrangement nommé motif d’empaquetage le long du sillon (AGPM) (along-groove packing motif). Ce motif est retrouvé à 14 endroits dans la structure du ribosome de même qu’entre l’ARN ribosomique 23S et les molécules d’ARN de transfert liées aux sites ribosomaux P et E. Le motif se forme par l’empaquetage de deux doubles hélices via leur sillon mineur. Le squelette sucre-phosphate d’une hélice voyage le long du sillon mineur de l’autre hélice et vice versa. Dans chacune des hélices, la région de contact comprend quatre paires de bases. L’empaquetage le plus serré est retrouvé au centre de l’arrangement où l’on retrouve souvent une paire de bases GU dans une hélice interagissant avec une paire de bases Watson-Crick (WC) dans l’autre hélice. Même si la présence des paires de bases centrales GU versus WC au centre du motif augmente sa stabilité, d’autres alternatives existent pour différents représentants du motif. L’analyse comparative de trois librairies combinatoires de gènes d’AGPM, où les paires de bases centrales ont été variées de manière complètement aléatoire, a montré que le contexte structural influence l’étendue de la variabilité des séquences de nucléotides formant les paires de bases centrales. Le fait que l’identité des paires de bases centrales puisse varier suggérait la présence d’autres déterminants responsables au maintien de l’intégrité du motif. L’analyse de tous les contacts entre les hélices a révélé qu’en dehors du centre du motif, les interactions entre les squelettes sucre-phosphate s’effectuent via trois contacts ribose-ribose. Pour chacun de ces contacts, les riboses des nucléotides qui interagissent ensemble doivent adopter des positions particulières afin d’éviter qu’ils entrent en collision. Nous montrons que la position de ces riboses est modulée par des conformations spécifiques des paires de bases auxquelles ils appartiennent. Finalement, un autre motif récurrent identifié à l’intérieur même de la structure de trois cas d’AGPM a été nommé « adenosine-wedge ». Son analyse a révélé que ce dernier est lui-même composé d’un autre arrangement, nommé motif triangle-NAG (NAG-triangle). Nous montrons que le motif « adenosine-wedge » représente un arrangement complexe d’ARN composé de quatre éléments répétitifs, c’est-à-dire des motifs AGPM, « hook-turn », « A-minor » et triangle-NAG. Ceci illustre clairement l’arrangement hiérarchique des structures d’ARN qui peut aussi être observé pour d’autres motifs d’ARN. D’un point de vue plus global, mes résultats enrichissent notre compréhension générale du rôle des différents types d’interactions tertiaires dans la formation des molécules d’ARN complexes. / Most RNA molecules have to adopt a complex tertiary structure to accomplish their biological functions. However, the important determinants of a polynucleotide chain that are required for its proper folding and its interactions with other elements are essentially unknown. The establishment of structure-function relationships in large RNA molecules goes inevitably through the analysis of each element of their structure separately and in context with other elements. Like a building, an RNA structure is built of repetitive pieces that are glued together in a specific way. These repetitive elements, instead of being bricks, are recurrent motifs. Recurrent RNA motifs are arrangements of nucleotides found in different parts of a tertiary structure and have identical or very similar conformations. Thus, a necessary step toward the understanding of RNA structure and function consists in the systematic identification of recurrent motifs, followed by their comparative analysis and establishment of their sequence consensus. The analysis of all instances of helical packing within the ribosome structure led to the identification of a new structural arrangement, named the along-groove packing motif (AGPM), which is found in 14 places of the ribosome structure as well as between the 23S ribosomal RNA and the transfer RNA molecules bound to the P and E sites. The motif is formed by the packing of two double helices via their minor grooves. The sugar-phosphate backbone of one helix goes along the minor groove of the other helix and vice versa. In each helix, the contact region includes four base pairs. The closest packing occurs in the center where one can often see a GU base pair packed against a WC base pair. While the presence of the central base pairs GU versus WC in the core of the motif enhances its stability, other alternatives are also present among available structures of the motif. A comparative analysis of three different combinatorial gene libraries of AGPM, in which the central base pairs were fully randomized, shows that the structural context influences the scope of nucleotide sequence variability of the central base pairs. The fact that the identity of the central base pairs can vary suggested that there are other determinants responsible of the motif’s integrity. Analysis of all other inter-helix contacts has shown that outside the center of the motif the interactions between backbones are made via three ribose-ribose contacts. Within each of these contacts, the riboses of the nucleotides that are in touch adopt particular positions in order to provide for collision-free interactions between them. We show that the position of these riboses is modulated by the specific base pair conformation in which it belongs. Finally, another recurrent arrangement that occurs within the structure of three cases of AGPM was identified and called the adenosine-wedge. Analysis has shown that the latter motif is itself composed of a smaller arrangement, called the NAG-triangle motif. We show that the adenosine-wedge motif represents a complex RNA arrangement composed of four repetitive elements, AGPM, the hook-turn, the A-minor and the NAG-triangle, which clearly illustrates the hierarchical organisation of the structure that could also occur in other RNA motifs as well. Altogether, my results enrich our general understanding of the role of different types of tertiary interactions in the formation of large RNA molecules.
3

RNA recurrent motifs : identification and characterization

Butorin, Yury 04 1900 (has links)
La détermination de la structure tertiaire du ribosome fut une étape importante dans la compréhension du mécanisme de la synthèse des protéines. Par contre, l’élucidation de la structure du ribosome comme tel ne permet pas une compréhension de sa fonction. Pour mieux comprendre la nature des relations entre la structure et la fonction du ribosome, sa structure doit être étudiée de manière systématique. Au cours des dernières années, nous avons entrepris une démarche systématique afin d’identifier et de caractériser de nouveaux motifs structuraux qui existent dans la structure du ribosome et d’autres molécules contenant de l’ARN. L’analyse de plusieurs exemples d’empaquetage de deux hélices d’ARN dans la structure du ribosome nous a permis d’identifier un nouveau motif structural, nommé « G-ribo ». Dans ce motif, l’interaction d’une guanosine dans une hélice avec le ribose d’un nucléotide d’une autre hélice donne naissance à un réseau d’interactions complexes entre les nucléotides voisins. Le motif G-ribo est retrouvé à 8 endroits dans la structure du ribosome. La structure du G-ribo possède certaines particularités qui lui permettent de favoriser la formation d’un certain type de pseudo-nœuds dans le ribosome. L’analyse systématique de la structure du ribosome et de la ARNase P a permis d’identifier un autre motif structural, nommé « DTJ » ou « Double-Twist Joint motif ». Ce motif est formé de trois courtes hélices qui s’empilent l’une sur l’autre. Dans la zone de contact entre chaque paire d’hélices, deux paires de bases consécutives sont surenroulées par rapport à deux paires de bases consécutives retrouvées dans l’ARN de forme A. Un nucléotide d’une paire de bases est toujours connecté directement à un nucléotide de la paire de bases surenroulée, tandis que les nucléotides opposés sont connectés par un ou plusieurs nucléotides non appariés. L’introduction d’un surenroulement entre deux paires de bases consécutives brise l’empilement entre les nucléotides et déstabilise l’hélice d’ARN. Dans le motif DTJ, les nucléotides non appariés qui lient les deux paires de bases surenroulées interagissent avec une des trois hélices qui forment le motif, offrant ainsi une stratégie élégante de stabilisation de l’arrangement. Pour déterminer les contraintes de séquences imposées sur la structure tertiaire d’un motif récurrent dans le ribosome, nous avons développé une nouvelle approche expérimentale. Nous avons introduit des librairies combinatoires de certains nucléotides retrouvés dans des motifs particuliers du ribosome. Suite à l’analyse des séquences alternatives sélectionnées in vivo pour différents représentants d’un motif, nous avons été en mesure d’identifier les contraintes responsables de l’intégrité d’un motif et celles responsables d’interactions avec les éléments qui forment le contexte structural du motif. Les résultats présentés dans cette thèse élargissent considérablement notre compréhension des principes de formation de la structure d’ARN et apportent une nouvelle façon d’identifier et de caractériser de nouveaux motifs structuraux d’ARN. / Although determination of the ribosome tertiary structure has been an outstanding step towards elucidation of the mechanism of protein synthesis, the complexity of this structure does not provide an easy answer of how this large molecular complex works. In order to understand the nature of structure-function relationships in the ribosome, the ribosome structure itself should be subjected to thorough analysis. In the last years, we undertook systematic efforts toward identification and characterization of all recurrent structural motifs existing in the ribosomal RNA and in other RNA-containing molecules. The analysis of many instances of helix-helix packing in the ribosome structure allowed us to identify a new structural motif which we called “G-ribo”. In this motif, an interaction of the sugar edge of a guanosine in one helix with the ribose of a nucleotide from another helix was found to be at the origin of a complex network of concomitant inter-nucleotide interactions. In total, the G-ribo motif was found at eight locations within the ribosomal RNA. A surprising feature of this motif consists in its ability to favor the formation of pseudoknots of a particular type. In the ribosome structure, there are four pseudoknots whose formation is mediated by the G-ribo motif. Systematic analysis of the ribosome as well as the RNAseP crystal structures allowed for the identification of a new RNA motif, which we called “DTJ”, or Double-Twist Joint motif. This motif is made of three short RNA double helices, which stack one on top of another. In the contact zone of each pair of helices two consecutive base pairs are over-twisted compared to the regular helical twist of 32° of A-RNA. One nucleotide of the base pair is always directly connected to the one nucleotide of the over-twisted base pair, while the opposite nucleotides of these base pairs are connected with one or several unpaired nucleotides. Introduction of the helical over-twist between two consecutive base pairs breaks the inter-nucleotide stacking and destabilizes the RNA double helix. In the DTJ, the unpaired nucleotides that connect the two over-twisted base pairs interact with one of the three motif-forming helices, providing an elegant strategy for the stabilization of the whole arrangement. To determine the nucleotide sequence constraints imposed on the structure of recurrent RNA motifs in the functional ribosome we developed a new approach consisting in the selection of functional ribosomes from a combinatorial gene library in which certain nucleotides of the rRNA gene corresponding to a particular motif were randomized. Comparison of the constraints determined for different examples of the same motif allowed us to distinguish between constraints responsible for the integrity of the motif and for its interaction with surrounding elements, including ribosomal proteins. The work significantly improves our understanding of the principles of RNA structure formation and opens a new way to identify and characterize RNA motifs.
4

RNA recurrent motifs : identification and characterization

Butorin, Yury 04 1900 (has links)
No description available.
5

Structural rules for the formation of backbone-backbone interactions between closely packed RNA double helices

Tao, Fatou 04 1900 (has links)
Les interactions entre les squelettes sucre-phosphate de nucléotides jouent un rôle important dans la stabilisation des structures tertiaires de larges molécules d’ARN. Elles sont régies par des règles particulières qui gouverne leur formation mais qui jusque là demeure quasiment inconnues. Un élément structural d’ARN pour lequel les interactions sucre-phosphate sont importantes est le motif d’empaquetage de deux doubles hélices d’ARN le long du sillon mineur. Ce motif se trouve à divers endroits dans la structure du ribosome. Il consiste en deux doubles hélices interagissant de manière à ce que le squelette sucre-phosphate de l’une se niche dans le sillon mineur de l’autre et vice versa. La surface de contact entre les deux hélices est majoritairement formée par les riboses et implique au total douze nucléotides. La présente thèse a pour but d’analyser la structure interne de ce motif et sa dépendance de stabilité résultant de l’association optimale ou non des hélices, selon leurs séquences nucléotidiques. Il est démontré dans cette thèse qu’un positionnement approprié des riboses leur permet de former des contacts inter-hélices, par l’entremise d’un choix particulier de l’identité des pairs de bases impliquées. Pour différentes pairs de bases participant à ce contact inter-hélices, l’identité optimale peut être du type Watson-Crick, GC/CG, or certaines pairs de bases non Watson-Crick. Le choix adéquat de paires de bases fournit une interaction inter-hélice stable. Dans quelques cas du motif, l’identité de certaines paires de bases ne correspond pas à la structure la plus stable, ce qui pourrait refléter le fait que ces motifs devraient avoir une liberté de formation et de déformation lors du fonctionnement du ribosome. / Although backbone-backbone interactions play an important role in stabilization of the tertiary structure of large RNA molecules, the particular rules that govern the formation of these interactions remain basically unknown. One RNA structural element for which the backbone-backbone interactions are essential is the along-groove packing motif. This motif is found in numerous locations in the ribosome structure; it consists of two double helices arranged such that the backbone of one helix is packed in the minor groove of the other helix and vice versa. The contact area between the two helices is mostly formed by riboses and totally involves twelve nucleotides. Here we analyze the internal structure of the along-groove packing motif and the dependence of stability of the association of the helices on their nucleotide sequences. We show that the proper positioning of the riboses that allows them to form inter-helix contacts is achieved through the particular choice of the identities of the base pairs involved. For different base pairs participating in the inter-helix contacts the optimal identities can be Watson-Crick, GC/CG, or certain non-Watson-Crick base pairs. The proper choice of the base pairs provides for the stable inter-helix interaction. In some cases of the motif, the identities of certain base pairs do not correspond to the most stable structure, which may reflect the fact that these motifs should break and form during the ribosome function.

Page generated in 0.0815 seconds