• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelos minimais e hierarquia de expressividade / Minimal Model and hierarchy of expressive power

Ferreira, Francicleber Martins January 2007 (has links)
FERREIRA, Francicleber Martins. Modelos minimais e hierarquia de expressividade. 2007. 109 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Departamento de Computação, Fortaleza-CE, 2007. / Submitted by guaracy araujo (guaraa3355@gmail.com) on 2016-06-29T18:55:46Z No. of bitstreams: 1 2007_dis_fmferreira.pdf: 752533 bytes, checksum: 98c57917ae2bd6af5de38f25d9ce7c39 (MD5) / Approved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-06-29T18:56:33Z (GMT) No. of bitstreams: 1 2007_dis_fmferreira.pdf: 752533 bytes, checksum: 98c57917ae2bd6af5de38f25d9ce7c39 (MD5) / Made available in DSpace on 2016-06-29T18:56:33Z (GMT). No. of bitstreams: 1 2007_dis_fmferreira.pdf: 752533 bytes, checksum: 98c57917ae2bd6af5de38f25d9ce7c39 (MD5) Previous issue date: 2007 / Neste trabalho, o conceito de Modelo Minimal e seu uso na semântica de certas lógicas são estudados. Nós analisamos o poder expressivo de diversas lógicas que usam o conceito de Modelo Minimal para definir sua relação de satisfação. Os principais teoremas estudados foram o Teorema de Löwenheim-Skolem e o Teorema de Definibilidade de Beth. No Capítulo 1, nós damos algumas motivações e revisamos alguns conceitos básicos de Lógica. No Capítulo 2, nos estudamos a Lógica de Menor Ponto Fixo|LFP. Nós exibimos uma prova de que o Teorema de Beth não vale para LFP. Nós usamos teorias infinitas para provar isso. Utilizando um resultado de Hodkinson para L!!1!, nós mostramos que o Teorema de Beth continua não valendo mesmo para teorias finitas de LFP. Nós continuamos estudando problemas de definibilidade para LFP e demonstramos que, para tipos especiais de definições implícitas formadas por Sistemas Recursivos, que funcionam como definições recursivas em determinados contextos, existe uma definição explícita. Nós promavos ainda que o Teorema de LÄowenheim-Skolem Descendente vale para qualquer conjunto de fórmulas de LFP, independentemente de sua cardinalidade. No Capítulo 3, a Circunscrição de McCarthy e as Teorias Circunscritivas Aninhadas de Lifschitz, uma generalização da primeira. Nós abordamos o poder expressivo de Circunscrição e a falha do Teorema de LÄowenheim-Skolem Descendente. Nós também investigamos questões de definibilidade no contexto de Circunscrição. Nós encerramos esse capítulo mostrando que as Teorias Circunscritivas Aninhadas possuem poder expressivo comparável com o da Lógica de Segunda-Ordem. No Capítulo 4, nós estendemos uma lógica criada por van Benthem dando origem a duas outras lógicas, a saber, U-MIN e I-MIN. Nós provamos que ambas são equivalentes entre si em poder expressivo e daí em diante chamamos U-MIN de MIN. Nós introduzimos a Lógica Si-MIN de minimalização simultânea e provamos que Si-MIN é equivalente a U-MIN e I-MIN e também à Lógica de Segunda-Ordem. Nós então propomos o fragmento MIN¢ de MIN, cujo poder expressivo situa-se entre o da Lógica de Segunda-Ordem e o de LFP. No Capítulo 5, nós reunimos nossas conclusões e apontamos trabalhos futuros.
2

Modelos minimais e hierarquia de expressividade / Minimal Model and hierarchy of expressive power

Francicleber Martins Ferreira 23 January 2007 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Neste trabalho, o conceito de Modelo Minimal e seu uso na semÃntica de certas lÃgicas sÃo estudados. NÃs analisamos o poder expressivo de diversas lÃgicas que usam o conceito de Modelo Minimal para definir sua relaÃÃo de satisfaÃÃo. Os principais teoremas estudados foram o Teorema de LÃwenheim-Skolem e o Teorema de Definibilidade de Beth. No CapÃtulo 1, nÃs damos algumas motivaÃÃes e revisamos alguns conceitos bÃsicos de LÃgica. No CapÃtulo 2, nos estudamos a LÃgica de Menor Ponto Fixo|LFP. NÃs exibimos uma prova de que o Teorema de Beth nÃo vale para LFP. NÃs usamos teorias infinitas para provar isso. Utilizando um resultado de Hodkinson para L!!1!, nÃs mostramos que o Teorema de Beth continua nÃo valendo mesmo para teorias finitas de LFP. NÃs continuamos estudando problemas de definibilidade para LFP e demonstramos que, para tipos especiais de definiÃÃes implÃcitas formadas por Sistemas Recursivos, que funcionam como definiÃÃes recursivas em determinados contextos, existe uma definiÃÃo explÃcita. NÃs promavos ainda que o Teorema de LÃowenheim-Skolem Descendente vale para qualquer conjunto de fÃrmulas de LFP, independentemente de sua cardinalidade. No CapÃtulo 3, a CircunscriÃÃo de McCarthy e as Teorias Circunscritivas Aninhadas de Lifschitz, uma generalizaÃÃo da primeira. NÃs abordamos o poder expressivo de CircunscriÃÃo e a falha do Teorema de LÃowenheim-Skolem Descendente. NÃs tambÃm investigamos questÃes de definibilidade no contexto de CircunscriÃÃo. NÃs encerramos esse capÃtulo mostrando que as Teorias Circunscritivas Aninhadas possuem poder expressivo comparÃvel com o da LÃgica de Segunda-Ordem. No CapÃtulo 4, nÃs estendemos uma lÃgica criada por van Benthem dando origem a duas outras lÃgicas, a saber, U-MIN e I-MIN. NÃs provamos que ambas sÃo equivalentes entre si em poder expressivo e daà em diante chamamos U-MIN de MIN. NÃs introduzimos a LÃgica Si-MIN de minimalizaÃÃo simultÃnea e provamos que Si-MIN à equivalente a U-MIN e I-MIN e tambÃm à LÃgica de Segunda-Ordem. NÃs entÃo propomos o fragmento MIN de MIN, cujo poder expressivo situa-se entre o da LÃgica de Segunda-Ordem e o de LFP. No CapÃtulo 5, nÃs reunimos nossas conclusÃes e apontamos trabalhos futuros.

Page generated in 0.116 seconds