Spelling suggestions: "subject:"recursive partitioning"" "subject:"recursive artitioning""
21 |
Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation modelsSchultz, Grant George 30 September 2004 (has links)
The collection and interpretation of data is a critical component of traffic and transportation engineering used to establish baseline performance measures and to forecast future conditions. One important source of traffic data is commercial motor vehicle (CMV) weight and classification data used as input to critical tasks in transportation design, operations, and planning. The evolution of Intelligent Transportation System (ITS) technologies has been providing transportation engineers and planners with an increased availability of CMV data. The primary sources of these data are automatic vehicle classification (AVC) and weigh-in-motion (WIM). Microscopic traffic simulation models have been used extensively to model the dynamic and stochastic nature of transportation systems including vehicle composition. One aspect of effective microscopic traffic simulation models that has received increased attention in recent years is the calibration of these models, which has traditionally been concerned with identifying the "best" parameter set from a range of acceptable values. Recent research has begun the process of automating the calibration process in an effort to accurately reflect the components of the transportation system being analyzed. The objective of this research is to develop a methodology in which the effects of CMVs can be included in the calibration of microscopic traffic simulation models. The research examines the ITS data available on weight and operating characteristics of CMVs and incorporates this data in the calibration of microscopic traffic simulation models. The research develops a methodology to model CMVs using microscopic traffic simulation models and then utilizes the output of these models to generate the data necessary to quantify the impacts of CMVs on infrastructure, travel time, and emissions. The research uses advanced statistical tools including principal component analysis (PCA) and recursive partitioning to identify relationships between data collection sites (i.e., WIM, AVC) such that the data collected at WIM sites can be utilized to estimate weight and length distributions at AVC sites. The research also examines methodologies to include the distribution or measures of central tendency and dispersion (i.e., mean, variance) into the calibration process. The approach is applied using the CORSIM model and calibrated utilizing an automated genetic algorithm methodology.
|
22 |
[en] APPLICATION OF NONLINEAR MODELS FOR AUTOMATIC TRADING IN THE BRAZILIAN STOCK MARKET / [pt] APLICAÇÃO DE MODELOS NÃO LINEARES EM NEGOCIAÇÃO AUTOMÁTICA NO MERCADO ACIONÁRIO BRASILEIROTHIAGO REZENDE PINTO 16 October 2006 (has links)
[pt] Esta dissertação tem por objetivo comparar o desempenho de
modelos não
lineares de previsão de retornos em 10 ativos do mercado
acionário brasileiro. Entre os modelos escolhidos, pode-se
citar o STAR-Tree, que combina
conceitos da metodologia STAR (Smooth Transition
AutoRegression) e do
algoritmo CART (Classification And Regression Trees),
tendo como resultado final uma regressão com transição
suave entre múltiplos regimes. A
especificação do modelo é feita através de testes de
hipótese do tipo Multiplicador de Lagrange que indicam o
nó a ser dividido e a variável explicativa
correspondente. A estimação dos parâmetros é feita pelo
método de Mínimos
Quadrados Não Lineares para determinar o valor dos
parâmetros lineares
e não lineares. Redes Neurais, modelos ARMAX (estes
lineares) e ainda o
método Naive também foram incluídos na análise. Os
resultados das previsões foram avaliados a partir de
medidas estatísticas e financeiras e se
basearam em um negociador automático que informa o
instante correto de
assumir uma posição comprada ou vendida em cada ativo. Os
melhores desempenhos foram alcançados pelas Redes Neurais,
pelos modelos ARMAX
e pela forma de previsão ARC (Adaptative Regime
Combination) derivada
da metodologia STAR-Tree, sendo ambos ainda superiores ao
retorno das
ações durante o período de teste / [en] The goal of this dissertation is to compare the
performance of non linear
models to forecast return on 10 equities in the Brazilian
Stock Market.
Among the chosen ones, it can be cited the STAR-Tree,
which matches
concepts from the STAR (Smooth Transition AutoRegression)
methodology
and the CART (Classification And Regression Trees)
algorithm, having
as the resultant structure a regression with smooth
transition among
multiple regimes. The model specification is done by
Lagrange Multiplier
hypothesis tests that indicate the node to be splitted and
the corresponding
explanatory variable. The parameter estimation is done by
the Non Linear
Least Squares method that determine the linear and non
linear parameters.
Neural Netwoks, ARMAX models (these ones linear) and the
Naive method
were also included in the analysis. The forecasting
results were calculated
using statistical and financial measures and were based on
an automatic
negociator that signaled the right instant to take a short
or a long position in
each stock. The best results were reached by the Neural
Networks, ARMAX
models and ARC (Adaptative Regime Combination )
forecasting method
derived from STAR-Tree, with all of them performing better
then the equity
return during the test period.
|
23 |
[en] TREE-STRUCTURED SMOOTH TRANSITION REGRESSION MODELS / [pt] MODELOS DE REGRESSÃO COM TRANSIÇÃO SUAVE ESTRUTURADOS POR ÁRVORESJOEL MAURICIO CORREA DA ROSA 22 July 2005 (has links)
[pt] O objetivo principal desta tese introduzir um modelo
estruturado por árvores
que combina aspectos de duas metodologias: CART
(Classification and Regression
Tree) e STR (Smooth Transition Regression). O modelo aqui
denominado
STR-Tree. A idéia especificar um modelo não-linear
paramétrico através da estrutura
de uma árvore de decisão binária. O modelo resultante pode
ser analisado
como uma regressão com transição suave entre múltiplos
regimes. As decisões
sobre as divisões dos nós são inteiramente baseadas em
testes do tipo Multiplicadores
de Lagrange. Uma especificação alternativa baseada em
validação cruzada
também utilizada. Um experimento de Monte Carlo utilizado
para avaliar o
desempenho da metodologia proposta comparando-a com outras
técnicas comumente
utilizadas. Como resultado verifica-se que o modelo STR-
Tree supera o
tradicional CART quando seleciona a arquitetura de árvores
simuladas. Além do
mais, utilizar testes do tipo Multiplicadores de Lagrange
gera resultados melhores
do que procedimentos de validação cruzada. Quando foram
utilizadas bases
de dados reais, o modelo STR-Tree demonstrou habilidade
preditiva superior ao
CART. Através de uma aplicação, extende-se a metodologia
para a análise de
séries temporais. Neste caso, o modelo denominado STAR-
Tree, sendo obtido
através de uma árvore de decisão binária que ajusta
modelos autoregressivos de
primeira ordem nos regimes. A série de retornos da taxa de
câmbio Euro/Dólar
foi modelada e a capacidade preditiva e o desempenho
financeiro do modelo
foi comparado com metodologias padrões como previsões
ingênuas e modelos
ARMA. Como resultado obtido um modelo parcimonioso que
apresenta desempenho
estatístico equivalente às estratégias convencionais,
porém obtendo
resultados financeiros superiores. / [en] He main goal of this Thesis is to introduce a tree-
structured model that combines
aspects from two methodologies: CART (Classification and
Regression Trees)
and STR (Smooth Transition Regression). The model is
called STR-Tree, The
idea is to specify a nonlinear parametric model through
the structure of a binary
decision tree. The resulting modelo can be analyzed as a
smooth transition
regression model with multiple regimes. The decisions for
splitting the nodes
of the tree are entirely based on Lagrange Multipliers
tests. An alternative
specification that uses cross- validation is also tried. A
Monte Carlo Experiment
is used to evaluate the performance of the proposed
methodology and to compare
with other techniques that are commonly used. The results
showed that the STRTree
model outperformed the traditional CART when specifying
the architecture
of a simulated tree. Moreover, the use of Lagrange
Multipliers tests gave better
results than a cross-validation procedure. After applying
the model to real
datasets, it could be seen that STR-Tree showed superior
predictive ability when
compared to CART. The idea was extended to time series
analysis through an
application. In this situation, we call the model as STAR-
Tree which is obtained
through a binary decision tree that fits first-order
autoregressive models for
different regimes. The model was fitted to the returns of
Euro/Dolar exchange
rate time series and then evaluated statistically and
financially. Comparing with
the naive approach and ARMA methodology, the STAR-Tree was
parsimonious
and presented statistical performance equivalent to
others. The financial results
were better than the others.
|
Page generated in 0.0785 seconds