Spelling suggestions: "subject:"redéploiement"" "subject:"ledéploiement""
1 |
CoRDAGe : Un service générique de co-déploiement et redéploiement d'applications sur grillesCudennec, Loïc 15 January 2009 (has links) (PDF)
La mutualisation des ressources physiques réparties dans les universités, les instituts et les entreprises a permis l'émergence des grilles de calcul. Ces infrastructures dynamiques sont bien adaptées aux applications scientifiques ayant de grands besoins en puissance de calcul et en espace de stockage. L'un des défis majeur pour les grilles de calcul reste la simplification de leur utilisation. Contrairement au déploiement d'applications sur une infrastructure centralisée, le déploiement sur une grille nécessite de nombreuses tâches pénibles pour l'utilisateur. La sélection des ressources, le transfert des programmes ainsi que la surveillance de l'exécution sont en effet laissés à sa charge. Aujourd'hui, de nombreux travaux proposent d'automatiser ces étapes dans des cas simples. En revanche très peu permettent de prendre en charge des déploiements plus complexes, comme par exemple le redéploiement d'une partie de l'application pendant son exécution ou encore le déploiement coordonné de plusieurs applications. <br /><br />Dans cette thèse, nous proposons un modèle pour prendre en charge le déploiement dynamique des applications sur les grilles de calcul. Ce modèle vise à offrir deux fonctionnalités principales. La première consiste en la traduction d'actions de haut niveau, spécifiques aux applications, en opérations de bas niveau, relatives à la gestion des ressources sur la grille. La deuxième consiste en la pré-planification des déploiements, redéploiements et codéploiements d'applications sur les ressources physiques. <br /><br />Le modèle satisfait trois propriétés. Il rend transparent la gestion des ressources à l'utilisateur. Il offre des actions spécifiques aux besoins de l'application. Enfin, il est non-intrusif en limitant les contraintes sur le modèle de programmation de l'application. <br /><br />Une proposition d'architecture nommée CORDAGE vient illustrer ce modèle pour le co-déploiement et le redéploiement d'applications. CORDAGE a été développé en lien avec l'outil de réservation OAR et l'outil de déploiement ADAGE. La validation du prototype s'est effectuée avec la plate-forme pair-à-pair JXTA, le service de partage de données JUXMEM ainsi que le système de fichiers distribué GFARM. Notre approche a été évaluée sur la grille expérimentale GRID' 5000.<br /><br />http://cordage.gforge.inria.fr/
|
2 |
La perception naïve non native des voyelles nasales du portugaisMartinez, Ruth 08 1900 (has links)
Les adultes peuvent éprouver des difficultés à discriminer des phonèmes d’une langue seconde (L2) qui ne servent pas à distinguer des items lexicaux dans leur langue maternelle (L1). Le Feature Model (FM) de Brown (1998) propose que les adultes peuvent réussir à créer des nouvelles catégories de sons seulement si celles-ci peuvent être construites à partir de traits distinctifs existant dans la L1 des auditeurs. Cette hypothèse a été testée sur plusieurs contrastes consonantiques dans différentes langues; cependant, il semble que les traits qui s’appliquent sur les voyelles n’aient jamais été examinés dans cette perspective et encore moins les traits qui opèrent à la fois dans les systèmes vocalique et consonantique et qui peuvent avoir un statut distinctif ou non-distinctif. Le principal objectif de la présente étude était de tester la validité du FM concernant le contraste vocalique oral-nasal du portugais brésilien (PB). La perception naïve du contraste /i/-/ĩ/ par des locuteurs du français, de l’anglais, de l’espagnol caribéen et de l’espagnol conservateur a été examinée, étant donné que ces quatre langues diffèrent en ce qui a trait au statut de la nasalité. De plus, la perception du contraste non-naïf /e/-/ẽ/ a été inclus afin de comparer les performances dans la perception naïve et non-naïve. Les résultats obtenus pour la discrimination naïve de /i/-/ĩ/ a permis de tirer les conclusions suivantes pour la première exposition à un contraste non natif : (1) le trait [nasal] qui opère de façon distinctive dans la grammaire d’une certaine L1 peut être redéployé au sein du système vocalique, (2) le trait [nasal] qui opère de façon distinctive dans la grammaire d’une certaine L1 ne peut pas être redéployé à travers les systèmes (consonne à voyelle) et (3) le trait [nasal] qui opère de façon non-distinctive dans la grammaire d’une certaine L1 peut être ou ne pas être redéployé au statut distinctif. En dernier lieu, la discrimination non-naïve de /e/-/ẽ/ a été réussie par tous les groupes, suggérant que les trois types de redéploiement s’avèrent possibles avec plus d’expérience dans la L2. / Adults may experience difficulties discriminating phonemes of a second language (L2) that do not serve to distinguish lexical items in their native language (L1). Brown’s (1998) Feature Model (FM) advances that adults may be able to create new sound categories only if these can be built from contrastive features existing in their L1. This hypothesis has been tested on various consonant contrasts in a number of languages; however, it appears that features applying on vowels have never been examined from this perspective and neither have features that operate both in the vowel and the consonant systems and that may have a contrastive or a non-contrastive status. The main purpose of the present study was to test the validity of the FM with respect to the oral-nasal vowel contrast of Brazilian Portuguese. The naïve perception of the contrast /i/-/ĩ/ by French, English, Caribbean Spanish, and conservative Spanish speakers was examined, given that these four languages differ with respect to the status of nasality. Moreover, the perception of the non-naïve contrast /e/-/ẽ/ was included to compare naïve and non-naïve perception performances. The obtained data for the naïve discrimination of /i/-/ĩ/ allowed to draw the following conclusions for the first exposure to a non-native contrast: (1) the feature [nasal] operating contrastively in the grammar of a given L1 can be redeployed within the vowel system, (2) the feature [nasal] operating contrastively in the grammar of a given L1 may not be redeployed across systems (consonant to vowel), and (3) the feature [nasal] operating non-contrastively in the grammar of a given L1 might or might not be redeployed to contrastive status. Lastly, the non-naïve perception of /e/-/ẽ/ was successful for all groups, suggesting that the three types of redeployment are possible with more experience in the L2.
|
3 |
Algorithmes distribués pour l'optimisation de déploiement des microrobots MEMS / Distributed algorithms for optimizing the deployment of MEMS microrobotsLakhlef, Hicham 24 November 2014 (has links)
Les microrobots MEMS sont des éléments miniaturisés qui peuvent capter et agir sur l'environnement. Leur taille est de l'ordre du millimètre et ils ont une faible capacité de mémoire et une capacité énergétique limitée. Les microrobots MEMS continuent d'accroître leur présence dans notre vie quotidienne. En effet, ils peuvent effectuer plusieurs missions et tâches dans une large gamme d'applications telles que la localisation d'odeur, la lutte contre les incendies, le service médical, la surveillance, le sauvetage et la sécurité. Pour faire ces taches et missions, ils doivent appliquer des protocoles de redéploiement afin de s'adapter aux conditions du travail. Ces algorithmes doivent être efficaces, évolutifs, robustes et ils doivent utiliser de préférence des informations locales. Le redéploiement pour les microrobots MEMS mobiles nécessite actuellement un système de positionnement et une carte (positions prédéfinies) de la forme cible. La solution traditionnelle de positionnement comme l'utilisation d'un GPS consommerait trop d'énergie. De plus, l'utilisation de solutions de positionnement algorithmique avec les techniques de multilatération pose toujours des problèmes à cause des erreurs dans les coordonnées obtenues.Dans la littérature, si nous voulons une auto-reconfiguration de microrobots vers une forme cible constituée de P positions, chaque microrobot doit avoir une capacité mémoire de P positions pour les sauvegarder. Par conséquent, si P est de l'ordre de milliers ou de millions, chaque noeud devra avoir une capacité de mémoire de positions en milliers ou millions. Parconséquent, ces algorithmes ne sont pas extensibles ou évolutifs. Dans cette thèse, on propose des protocoles de reconfiguration où les noeuds ne sont pas conscients de leurs positions dans le plan et n'enregistrent aucune position de la forme cible. En d'autres termes, les noeuds ne stockent pas au départ les coordonnées qui construisent la forme cible. Par conséquent, l'utilisation de mémoire pour chaque noeud est réduite à une complexité constante. L'objectif desalgorithmes distribués proposés est d'optimiser la topologie logique du réseau des microrobots afin de chercher une meilleure complexité pour l'échange de message et une communication peu coûteuse. Ces solutions sont complètement distribués. On montre pour la reconfiguration d'une chaîne à un carré comment gérer la dynamicité du réseau pour sauvegarder l'énergie, on étudie comment utiliser le parallélisme de mouvements pour optimiser le temps d'exécution et lenombre de mouvements. Ainsi, on propose une autre solution où la topologie physique initiale peut être n'importe quelle configuration initiale. Avec ces solutions, les noeuds peuvent exécuter l'algorithme indépendamment du lieu où ils sont déployés, parce que l'algorithme est indépendant de la carte de la forme cible. En outre, ces solutions cherchent à atteindre la forme de la cible avec une quantité minimale de mouvement. / MEMS microrobots are miniaturized elements that can capture and act on the environment. They have a small size, low memory capacity and limited energy capacity. These inexpensive devices can perform several missions and tasks in a wide range of applications such as locating odor, fighting against fires, medical service, surveillance, search, rescue and safety. To do these tasks and missions, they have to carry out protocols of redeployment to adapt to the working conditions. These algorithms should be efficient, scalable, robust and should only use local information. Redeployment for mobile MEMS microrobots currently requires a positioning system and a map (predefined positions) of the target shape. Traditional positioning solutions such as using GPS consumes a lot of energy and it is no applicable in the micro scale. Also, the use of an algorithmic solution positioning with multilateration techniques causes problems due to errors in the coordinates obtained. In the literature works, if we want a microrobots self-reconfiguring to a target shape consisting of P positions, each microrobot must have a storage capacity of at least P positions to save them. Therefore, if P equals to thousands or millions, every node must have a storage capacity of thousands or millions of positions. However, these algorithms are notscalable. In this thesis, we propose protocols of self-reconfiguration where nodes are not aware of their position in the plane and do not record the positions of the target shape. Therefore, the memory space required for each node is significantly reduced at a constant complexity. The purpose of these distributed algorithms is to optimize the logical topology of the network of mobile MEMS microrobots to seek a better complexity for message exchange and inexpensive communication.In this work, we show for the reconfiguration of a chain into a square, how to handle the dynamicity of the network to save energy, and we study how to use parallelism in motion to optimize the execution time and the number of movements. Furthermore, another solution is proposed where the initial physical topology may be any connected configuration. With thesesolutions the nodes can execute the algorithm regardless of where they are deployed, because the algorithm is independent of the map of the target shape. Furthermore, these solutions seek to achieve the shape of the target with a minimum amount of movement.
|
Page generated in 0.061 seconds