• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Previsão de cargas não residenciais mistas por redes neurais ARTMAP Fuzzy /

Alves, Marleide Ferreira. January 2019 (has links)
Orientador: Anna Diva Plasencia Lotufo / Resumo: Os sistemas de energia elétrica estão passando por transformações. Aos poucos, técnicas de sistemas de informação estão sendo incorporadas aos sistemas atuais de energia. Basicamente este é o conceito de smart grid. Esta incorporação visa aumentar a eficiência dos sistemas de energia elétrica, pois os diversos agentes envolvidos em todo o sistema terão à disposição informações mais completas, precisas e de forma praticamente instantânea. Como consequência, haverá um aumento significativo de dados disponíveis para serem empregados de variadas formas. Um exemplo do uso de dados é a previsão de demanda de energia elétrica. De uma forma geral, previsões servem como suporte para suprir demandas, estimar custos ou justificar investimentos futuros. No campo de previsão de demanda de cargas elétricas existem diversos modelos na literatura, a grande maioria se concentra em níveis mais agregados, que atendem a grandes consumidores em que o fornecimento de energia é feito, por exemplo, por uma subestação. Uma smart grid também coloca à disposição as informações de consumo de energia em níveis cada vez menos agregados, como uma residência ou um prédio comercial. Realizar previsões neste nível é um desafio, pois essas demandas são muito influenciadas pelo comportamento humano. Diferentemente dos níveis mais agregados, modelos de previsão para níveis menos agregados, ou desagregados, ainda são poucos. O objetivo deste trabalho é fazer a previsão de cargas elétricas não residenciais mistas ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Electrical power systems are in transformation nowadays. Gradually, information system technology are being introduced to the energy systems. Basically, this is the concept of smart grid. This new concept aims to improve the efficiency of the energy systems, once the evolved agents will provide complete and precise information instantaneously. This way, a significant increase in data will be available to be employed in several forms. One example in using these data is electric energy demand forecasting. In general, predictions are support to provide electric load demand, estimate costs or justify future investments. Concerning electric load demand, there are several models in the literature, and the majority is concentrated in aggregated levels, attending large consumers, where, for example, the energy supply is provided by a substation. Considering the smart grid, there are consumption information in less aggregated levels as for example residences or commercial buildings. Therefore, realizing predictions in these levels (less aggregated) is a challenge, once the demand is influenced by the human behavior. The models for predicting loads in aggregated levels are common, in the contrary of less aggregated that are few. This work aims to predict short term mixed nonresidential electric loads using data from a Brazilian University. Firstly, Fuzzy ARTMAP Neural Network is chosen to execute the predictions, and afterwards a hybrid methodology containing Fuzzy ARTMAP and Square Mi... (Complete abstract click electronic access below) / Doutor
2

Rede Neuro-Fuzzy-Wavelet para detecção e classificação de anomalias de tensão em sistemas elétricos de potência

Malange, Fernando Cezar Vieira [UNESP] 26 April 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:50Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-04-26Bitstream added on 2014-06-13T19:40:17Z : No. of bitstreams: 1 malange_fcv_dr_ilha.pdf: 2238559 bytes, checksum: 4603e9cf1612e9f68b0c3cf1e7a80e43 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Muitos esforços têm sido despendidos para tentar sanar problemas relacionados com Qualidade da Energia Elétrica (QEE), principalmente na automação de processos e desenvolvimento de equipamentos de monitorização que possibilitem maior desempenho e confiabilidade a todo o Sistema Elétrico. Esta pesquisa apresenta um sistema eficiente de identificador/classificador automático de distúrbios chamado de Rede Neuro-Fuzzy-Wavelet. A estrutura básica dessa rede é composta por três módulos: o módulo de detecção de anomalias onde os sinais com distúrbios são identificados, o módulo de extração de características onde as formas de onda com distúrbio são analisadas, e o módulo de classificação que conta com uma rede neural ARTMAP Fuzzy, a qual indica qual o tipo de distúrbio sofrido pelo sinal. Os tipos de distúrbios incluem os isolados de curto prazo, tais como: afundamento de tensão (sag), elevação de tensão (swell), os distúrbios de longo prazo como distorção harmônica, bem como distúrbios múltiplos simultâneos como afundamento de tensão com distorção harmônica e elevação de tensão com distorção harmônica. A concepção do sistema de inferência (neural wavelet ARTMAP fuzzy) permite realizar a classificação dos referidos distúrbios de forma robusta e com grande rapidez na obtenção das soluções. Testes apontam para o alto desempenho dessa rede na detecção e classificação correta dos tipos de distúrbios de tensão analisados, 100% de acerto. A forma robusta e grande rapidez na obtenção dos resultados, possibilita sua aplicação em tempo real, visto que o esforço computacional, muito pequeno, é alocado, basicamente, na fase de treinamento. Somente uma pequena parcela de tempo computacional é necessária para a efetivação das análises. Além do mais, a metodologia proposta pode ser estendida para a realização de tarefas mais complexas... / Many efforts have been spent to solve problems related to Power Quality (PQ), principally in process automation and developing monitoring equipments that can provide more reliability and behavior for the electrical system. This research presents an efficient automatic system to identify/classify disturbs by Fuzzy Wavelet Neural Network. The basic structure of this neural network is composed of three modules such as: module for detecting anomalies where the signals with disturbs are identified, module for extracting the characteristics where the wave forms with disturbs are analyzed, and the module of classification that contains a fuzzy ARTMAP neural network that shows the type of disturbs existing in the signal. The types of disturbs include the short term isolated ones which are: voltage dip (sag), voltage increasing (swell); the long term disturbs such as harmonic distortion as well as the multiple simultaneous ones like the voltage dip with harmonic distortion and voltage increasing with harmonic distortion. The inference system (neural wavelet ARTMAP fuzzy) allows executing the classification of the cited disturbs very fast and obtaining reliable results. This neural network provides high performance when classifying and detecting the voltage disturbs very fast with about 100% of accuracy. The speed in obtaining the results allows an application in real time due to a low computational effort, which is basically in the training phase of the neural network. A little time of the computational effort is spent for the analysis. Moreover the proposed methodology can be used for realizing more complex tasks, as for example the localization of the power sources of the voltage disturbs. It is a very important contribution in the power quality, mainly to be a needy activity for solutions on the specialized literature

Page generated in 0.0598 seconds