• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 2
  • Tagged with
  • 16
  • 16
  • 16
  • 11
  • 9
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design Principles for All-Organic, Redox-Targeting Flow Batteries

Wong, Curt M. 04 November 2022 (has links)
No description available.
12

ADVANCING PRACTICAL NONAQUEOUS REDOX FLOW BATTERIES: A COMPREHENSIVE STUDY ON ORGANIC REDOX-ACTIVE MATERIALS

Zhiguang Li (17015934) 25 September 2023 (has links)
<p dir="ltr">As the demand for energy rises and the threat of climate change looms, the need for clean, reliable, and affordable energy solutions like renewable energies has been more crucial. Energy storage systems (ESSs) are indispensable in addressing the intermittent nature of renewable energies and optimizing grid efficiency. Redox flow batteries (RFBs), thanks to their scalability, independent energy and power, swift response time, and minimal environmental impact, are a particularly promising ESS technology for long-duration storage applications. Despite the technological maturity of aqueous RFBs, nonaqueous organic RFBs (NAORFBs) are a prospective solution due to their wider operational voltage, potentially higher energy density, and larger pool of redox-active materials. However, the current state-of-the-art NAORFBs face challenges due to the lack of suitable organic redox-active materials (ORMs).</p><p dir="ltr">Despite the development of new materials, how their variables influence the total system cost of RFBs remains an unsolved challenge. With this regard, we established a techno-economic (TE) model to calculate the capital cost of nonaqueous hybrid RFBs (NAHRFBs). Prior to this work, NAHRFBs, which employs lithium metal as the anode, were regarded as an RFB system with the highest energy density. However, the correlation between their features and the system cost remained unclear, leaving a research gap for new ORMs. In our model, we selected a state-of-the-art NAHRFB system where 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) serves as the catholyte and lithium metal functions as the anode. Thereafter, sensitivity analyses identified several key factors that determine the system cost, including operational current density, area-specific resistance, cell voltage, electrolyte composition, and both the price and equivalent molecular weight of the ORM. To enhance the cost-competitiveness of current NAHRFBs, it is advised to increase the current density by 10 times and modulate the ORM-related characteristics. The virtually optimized condition manifests that the system cost of NAHRFB can meet the long-term cost target set by the U. S. Department of Energy.</p><p dir="ltr">Informed by the TE model, we discovered that elevating the oxidation potential of catholyte ORMs is instrumental in reducing the system cost of RFBs. To explore this possibility, we incorporated fluorine atoms, a potent electron-withdrawing group (EWG), into a dimethoxybenzene (DMB) derivative, yielding a new ORM (ANL-C46) with an oxidation potential enhanced by ~0.41 V. Surprisingly, ANL-C46 demonstrated superior kinetic and electrochemical stability compared to its parent molecule, as indicated by electron paramagnetic resonance (EPR) study and bulk electrolysis. In particular, the cycling performance of ANL-46 during the bulk electrolysis outperformed most reported high-potential (> 1 V vs. Ag/Ag<sup>+</sup>) ORMs. Density functional theory (DFT) calculations reveals that the introduced fluorine substituents suppress the typical side reaction pathways of the DMB series. These findings offer valuable insights into molecular engineering strategies that concurrently improve multiple desired ORM properties.</p><p dir="ltr">The stability of ORMs is critical for ensuring the extended lifetime of RFBs. We conducted a systematic exploration of the conjugation effect, which potentially stabilizes the ORMs by facilitating a more homogeneous distribution of delocalized charges. This was applied to tailor the electrochemical and physical properties of several DMB derivatives with varying aromatic ring counts. As we extended the aromatic core from 1,4-dimethoxybenzene (1,4-DMB) to 1,4-dimethoxynaphthalene (1,4-DMN), we noted a decrease in oxidation potential, enhanced kinetic stability, and an extended cycling life. However, further extending the aromatic core to 2-ethyl-9,10-dimethyanthracene (EDMA) results in rapid dealkylation of the radical cation due to increased strain in the methoxy substituents. Additionally, 1,4-DMN shows cross-reactions between radical cations, likely via disproportionation. This study demonstrates that extending the π-conjugation changes reactivity in multiple ways. Therefore, attempts to lower oxidation potential and improve ORMs stability through π-conjugation should be pursued with caution.</p>
13

Sustainable Recycling of Electrolytes for Vanadium Redox Flow Batteries : Method development and Review (Bachelor Thesis) / Hållbar återvinning av elektrolyter för Vanadium Redox Flödesbatterier. : Utveckling av en miljövänlig återvinningsmetod samt översikt av andrarelaterade vetenskapliga forskningar.

Doulati, Reza January 2023 (has links)
Vanadium Redox Flow Batteries VRFBs are promising energy storage systems with highly recyclable electrolytes. The recycling of these systems usually involves ammonium-based salt precipitation steps, which produce toxicgases and contaminated water as waste. In this study, a novel method has been developed to recycle vanadiumdirectly from VRFB electrolyte solutions. The purity and characteristics of the final product have been analyzedusing X-ray Diffraction and Cyclic Voltammetry analysis. The method developed in this study has a precipitationrecovery of 98%. However, further investigation is needed to improve product purity and method optimization. / Sammanfattning på svenska: Vanadium Redox Flödes Batterier VRFB är lovande energilagringssystem medmycket återvinningsbara elektrolyter. Återvinningen av dessa system innefattar vanligtvis ammoniumbaseradesaltutfällningssteg som producerar giftiga gaser och förorenat vatten som avfall. I denna studie har en ny metodutvecklats för återvinning av vanadium direkt från VRFB elektrolytlösningar. Renheten och egenskaperna hosslutprodukten har analyserats med X-ray diffraktion och cyclic voltammetry analys. Metoden som utvecklats idenna studie har återvinnings kapacitet på 98 %. Ytterligare utredning behövs inom förbättring av produktensrenhet samt metods optimering.
14

CFD Studies on Mass Transport in Redox Flow Batteries

Ke, Xinyou 12 June 2014 (has links)
No description available.
15

Modeling and Experimental Investigations into Soluble Lead Redox Flow Battery : New Mechanisms

Nandanwar, Mahendra N January 2015 (has links) (PDF)
Continued emission of green house gases has energized research activity worldwide to develop efficient ways to harness renewal energy. The availability of large scale energy storage technologies is essential to make renewal energy a reliable source of energy. Redox flow batteries show potential in this direction. These batteries typically need expensive membranes which need replacement be-cause of fouling. The recently proposed soluble lead redox flow battery (SLRFB), in which lead ions deposit on electrodes in charge cycle and dissolve back in discharge cycle, can potentially cut down the cost of energy storage by eliminating membrane. A number of challenges need to be overcome though. Low cycleability, residue formation, and low efficiencies are foremost among these, all of which require an understanding of the underlying mechanisms. A model of laminar flow-through SLRFB is first developed to understand buildup of residue on electrodes with continued cycling. The model accounts for spatially and temporally growing concentration boundary layers on electrodes in a self consistent manner by permitting local deposition/dissolution rates to be controlled by local ion transport and reaction conditions. The model suggests controlling role for charge transfer reaction on electrodes (anode in particular) and movement of ions in the bulk and concentration boundary layers. The non-uniform current density on electrodes emerges as key to formation of bare patches, steep decrease in voltage marking the end of discharge cycle, and residue buildup with continuing cycles. The model captures the experimental observations very well, and points to improved operational efficiency and decreased residue build up with cylindrical electrodes and alternating flow direction of recirculation. The underlying mechanism for more than an order of magnitude increase in cycle life of a beaker cell battery with increase in stirrer speed is unraveled next. Our experiments show that charging with and without stirring occurs identically, which brings up the hitherto unknown but quite strong role of natural convection in SLRFB. The role of stirring is determined to be dislodgement/disintegration of residue building up on electrodes. The depletion of active material from electrolyte due to residue formation is offset by “internal regeneration mechanism”, unraveled in the present work. When the rate of residue formation, rate of dislodging/disintegration from electrode, and rate of regeneration of active material in bulk of the electrolyte becomes equal, perpetual operation of SLRFB is expected. The identification of strong role of free convection in battery is put to use to demonstrate a battery that requires stirring/mixing only intermittently, during open circuit stages between charge and discharge cycles when no current is drawn. Inspired by our experimental finding that the measured currents for apparently diffusion limited situations (no external flow) are far larger than the maxi-mum possible theoretical value, the earlier model is modified to account for natural convection driven by concentration gradient of lead ions in electrolyte. The model reveals the presence of strong natural convection in battery. The induced flow in the vicinity of the electrodes enhances mass transport rates substantially, to the extent that even in the absence of external flow, normal charge/discharge of battery is predicted. The model predicted electrochemical characteristics are verified quantitatively through voltage-time measurements. The formation of flow circulation loops driven by electrode processes is validated qualitatively through PIV measurements. Natural convection is predicted to play a significant role in the presence of external flow as well. The hitherto unexplained finding in the literature on insensitivity of charge-discharge characteristics to electrolyte flow rate is captured by the model when mixed mode of convection is invoked. Flow reversal and wavy flow are predicted when natural convection and forced convection act in opposite directions in the battery. The effect of the presence of non-conducting material (PbO on anode) on the performance of SLRFB is studied using a simplified approach in the model. The study reveals the presence of charge coup de fouet phenomenon in charge cycle. The phenomenon as well as the predicted effect of depth of discharge on the magnitude of charge coup de fouet are confirmed experimentally.
16

Fundamental Studies on Transport Phenomena in Redox Flow Batteries with Flow Field Structures and Slurry or Semi-Solid Electrodes: Modeling and Experimental Approaches

Ke, Xinyou 29 January 2019 (has links)
No description available.

Page generated in 0.0858 seconds