• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • 3
  • 1
  • Tagged with
  • 38
  • 38
  • 15
  • 12
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Détermination de l’impact de la porosité de carbones activés sur l’énergie spécifique de supercondensateur utilisant un liquide ionique redox

Nadour, Hassina 12 1900 (has links)
Les supercapacités électrochimiques sont des dispositifs de stockage d’énergie à haute puissance, permettant d’emmagasiner et de relarguer l’énergie très rapidement. Parce qu’ils ne peuvent stocker de grandes quantités d’énergie, ces dispositifs sont souvent utilisés en tandem avec des batteries qui, elles, ont de grandes densités d’énergie. Le stockage d’énergie dans les supercapacités se fait principalement par le déplacement des ions dans la double couche électrique de carbones activés (élaboré par un traitement thermique en base concentrée pour augmenter la taille et la quantité des pores) à haute surface spécifique. La présence de réactions faradiques lors du stockage permettrait d’augmenter l’énergie spécifique des supercapacités et d’en améliorer l’utilisation. L’approche préconisée dans le groupe Rochefort pour arriver à ce but est d’ajouter une espèce redox soluble dans l’électrolyte. Les liquides ioniques redox (donc modifiés avec un centre électroactif) sont particulièrement prometteurs par leur grande solubilité dans les électrolytes à base de solvants organiques. Il y a toutefois bien peu de connaissances sur leur fonctionnement et leurs interactions avec les électrodes de carbone activé. Dans le cadre de ce mémoire, nous avons étudié les interactions entre un liquide ionique redox modifié avec le groupement ferrocène [EMIm][FcNTf] (1-Ethyl-3-methylimidazolium Ferrocénylsulfonyl(trifluorométhylsulfonyl) imide) et deux matériaux en carbone poreux. L’utilisation de deux carbones commerciaux YP-80F et YP-50F, qui ont une des formes de pores semblable, mais des distributions des pores différentes, a permis de mieux comprendre l’effet de la taille des pores sur le stockage. Le carbone avec la plus grande proportion de pores de grande taille allant jusqu’à 3 nm, le YP-80F, a révélé une forte augmentation de l’énergie spécifique de l’ordre de 30 % à 40 % par rapport à celui avec des pores plus restreints (32,9 Wh/kg pour YP-80F contre 19,7 Wh/kg pour YP-50F). Pour déterminer si l’augmentation de l’énergie spécifique est à l’origine d’une meilleure accessibilité des ions redox volumineux aux pores du carbone, nous avons utilisé la spectroscopie de résonance magnétique nucléaire à l’état solide (RMN en 19F). Les études RMN ont montré que le carbone YP-80F, lors de sa charge, contient une plus grande proportion d’ions dans les pores que le YP-50F qui présente des pores de plus petite taille. Ces résultats permettront de développer des espèces électroactives mieux adaptées aux carbones avec lesquels elles sont utilisées et d’améliorer le stockage d’énergie dans les supercapacités électrochimiques. / Electrochemical supercapacitors are high-power energy storage devices that can store and release energy very quickly. Because they cannot store large quantities of energy, these devices are often used in tandem with batteries, which have high energy densities. Energy storage in supercapacitors is mainly achieved by moving ions in the electric double layer of activated carbons with high specific surface area. The addition of faradic reactions during storage would increase the specific energy of supercapacitors and improve their utilization. The approach followed by the Rochefort group to achieve this goal is to add a soluble redox species to the electrolyte of the supercapacitor. Redox ionic liquids (i.e. modified with an electroactive center) are particularly promising because of their high solubility in electrolytes. However, very little is known about how they work and interact with activated carbon electrodes. In this work, we studied the interactions between a redox ionic liquid modified with the ferrocene moiety and two porous carbon materials. Using two commercial carbons YP-80F and YP-50F, which have similar porosity but different pore distributions, we were able to gain a better understanding of the effect of pore size on storage. The carbon with the highest proportion of large pores, YP-80F, showed a strong increase in specific energy of the order of 30% to 40% over that with smaller pores (32,9 Wh/kg for YP-80F vs. 19,7 Wh/kg for YP-50F). Solid-state nuclear magnetic resonance (NMR) spectroscopy was used to determine whether the increase in specific energy was due to greater accessibility of bulky redox ions to the carbon pores. NMR studies have shown that YP-80F carbon, when charged, contains a higher proportion of ions in the porosity than YP-50F, which has a more restricted porosity. These results will enable us to develop electroactive species better suited to the carbons with which they are used, and to improve energy storage in electrochemical supercapacitors.
32

Novel Redox Responsive Cationic Lipids, Lipopolymers, Glycolipids And Phospholipid-Cationic Lipid Mixtures : Syntheses, Aggregation And Gene Transfection Properties

Guru Raja, V January 2014 (has links) (PDF)
The thesis entitled “Novel Redox Responsive Cationic Lipids, Lipopolymers, Glycolipids and Phospholipid-Cationic Lipid Mixtures: Syntheses, Aggregation and Gene Transfection Properties” elucidates the design, synthesis, aggregation and gene transfection properties of novel cholesterol based cationic lipids with ferrocene as the redox moiety, polyethylenimine based ferrocenylated lipopolymers and cholesterol based non-ionic glycolipids. The thesis also discusses the cationic phospholipid-cationic lipid mixtures as superior gene transfection agents. The work has been divided into six chapters. Chapter 1. Introduction Part A. Various Cholesterol based Systems for Applications as Biomaterials Liposomes composed of cationic lipids have become popular gene delivery vehicles. A great deal of research is being pursued to make efficient vectors by varying their molecular architecture. Cholesterol being ubiquitous component in most of the animal cell membranes is increasingly being used as a hydrophobic segment of synthetic cationic lipids. In this chapter we describe various cholesterol based cationic lipids and focus on the effect of modifying various structural segments like linker and the headgroup of the cationic lipids on gene transfection efficiency with a special emphasis on the importance of ether linkage between cholesteryl backbone and the polar headgroup. Interaction of cationic cholesteryl lipids with dipalmitylphosphatidycholine membranes is also discussed here. Apart from cholesterol being an attractive scaffold in the drug/gene delivery vehicles, certain cholesteryl derivatives have also been shown to be attractive room temperature liquid-crystalline materials. Part B. Diverse Applications of Ferrocene Derivatives This chapter gives a brief overview of ferrocene chemistry followed by description of major applications of ferrocenyl derivatives in a variety of fields like catalysis, materials chemistry, electrochemical sensors, medicinal chemistry etc. We discuss the use of ferrocene as an electrochemical and redox active switch to achieve control over supramolecular aggregation. It also reviews ferrocene based amphiphiles including surfactants, lipids and polymers with an emphasis on the role of ferrocene over aggregate formation and their utilization in biological applications. Chapter 2: Optimization of Redox Active Alkyl-Ferrocene Modified Polyethylenimines for Efficacious Gene Delivery in Serum 1a-c, n = 6, P8-C6-F1, P8-C6-F2, P8-C6-F3 2a-c, n = 11, P8-C11-F1 P8-C11-F2, P8-C11-F3 % ferrocene grafting, F1 = 15%, F2 = 25% and F3 = 50% Figure 1. Structure of the alkyl-ferrocene modified 800 Da Branched Polyethylenimine. In this chapter we present six new lipopolymers based on low molecular weight polyethylenimines (BPEI 800 Da) which are hydrophobically modified using ferrocene terminated alkyl tails of variable lengths. The effects of degree of grafting, spacer length and redox state of ferrocene in the lipopolymer on the self assembly properties were investigated in detail by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential measurements. The assemblies displayed a redox induced increase in the size of the aggregates. The coliposomes comprising of the lipopolymer and a helper lipid 1,2-Dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) showed excellent gene delivery capability in serum containing environment in two cancer cell lines (HeLa, U251 cells). Optimized formulations showed remarkably higher transfection activity than BPEI 25 KDa and even better than commercial Lipofectamine 2000 as evidenced from luciferase activity and EGFP expression analysis. Oxidation of ferrocene in lipopolymers led to reduced levels of gene transfection which was also followed by cellular internalization of fluorescently labeled pDNA using confocal microscopy. Cytotoxicity assay revealed no obvious toxicity for the lipopolyplexes in the range of optimized transfection levels. Overall, we have exploited the redox activity of ferrocene in PEI based polymeric gene carriers for trenchant control over gene transfection potential. RLU/mg protein HeLa Cells Figure 2. Maximum transfection efficacies of optimized redox lipopolymer/DOPE formulations by (A) Luciferase Assay and (B) Flow cytometry (GFP expression). Chapter 3. Membranes derived from Redox-active Cholesterol based Cationic Lipids and their Interactions with DNA and Phospholipid Membranes Figure 3. Molecular structures of the electroactive cholesterol based monomeric and gemini lipids. This chapter describes the synthesis and aggregation properties of two series of redox-active ferrocene containing monomeric and gemini cationic lipids with cholesterol as a hydrophobic domain. These cationic lipids are modified at their headgroup region using ferrocene terminated alkyl chains of differing length. All the four cationic lipids formed stable suspensions in water. Aggregation behavior of these cationic lipids in aqueous suspensions in their unoxidized and oxidized state was studied using TEM, DLS, zeta potential measurements and XRD studies. Cationic lipids with ferrocene in natural, reduced state were found form bigger sized vesicles which upon oxidation became smaller aggregates with increased zeta potential. XRD results indicate the existence of nice lamellar arrangements of the lipid bilayers. Thermotropic phase transition behavior of DPPC membranes incorporated with cationic ferrocene lipids was also studied using differential scanning calorimetry. Finally, we assayed pDNA (plasmid DNA) binding ability of all the four cationic lipids using ethidium bromide intercalation assay where all the cationic lipid formulations showed excellent DNA binding capability. In the experiments involving SDS-induced release of DNA, we observed that redox-active monomeric lipids (3a-b) were found to be more efficient in facilitating the release of DNA from the liposome-DNA complex in the presence of negatively charged SDS micelles than their gemini counterparts (4a-b). Chapter 4. Redox-responsive Gene Delivery by Ferrocene containing Cationic Cholesteryl Lipids in Serum This chapter describes the transfection efficacy of redox-active monomeric and gemini cationic lipids with cholesterol backbone. The transfection efficiency of all the lipids could be tuned by changing the oxidation state of the ferrocene moiety. Gene transfection capability was assayed in terms of EGFP expression using pEGFP-C3 plasmid DNA in three cancer cell lines of different origin, namely Caco-2, HEK293T and HeLa in the presence of serum. Figure 4. Effect of oxidation state of ferrocene on maximum transfection efficacies of monomeric and gemini lipids in three different cell lines (Caco-2, HEK 293T and HeLa). Cationic liposomal formulations with ferrocene in its reduced state were observed to be potent transfectants reaching the EGFP expression levels even better than commercial lipofectamine 2000 in the presence of serum as evidenced by flow cytometry. EGFP expression was further substantiated using fluorescence microscopy studies. All liposomal formulations containing oxidized ferrocene displayed diminished levels of gene expression and interestingly, these results were consistent for each formulation in all the three cell lines. Assessment of EGFP expression mediated by both reduced and oxidized ferrocene containing formulations was also undertaken following cellular internalization of labelled pDNA using confocal microscopy and flow cytometry. Lipoplexes derived from different liposomal formulations with reduced and oxidized ferrocene were characterised using TEM, AFM, zeta potential and DLS measurements. Overall, we demonstrate here controlled gene transfection levels using redox driven, transfection efficient cationic monomeric and gemini lipids. Chapter 5: Synthesis of ‘Click Chemistry’ Mediated Glycolipids: Their Aggregation Properties and Interaction with DPPC Membranes This chapter describes the synthesis and aggregation properties of cholesterol based glycolipids along with their interaction with a model phosphatidylcholine membranes. Three series of non-ionic glycolipids with hydrophobic cholesterol backbone and various monosaccharide and disaccharide sugars as the hydrophilic polar domain have been synthesized. These were conjugated to the cholesteryl backbone via oligooxyethylene spacers of different lengths (n = 1, 3 and 4) using Cu (I) catalyzed Huisgen [3+2] cycloaddition, which is popularly known as „Click Chemistry‟. All the synthetic glycolipids (5a-d, 6a-d and 7a-d) formed vesicular aggregates in aqueous medium as confirmed by TEM and DLS. XRD studies with the cast films of lipids revealed that the bilayer width increased with increase in the length of oligoethylene spacer unit that has been incorporated between the hydrophobic and hydrophilic domains. Also, within the same series containing a particular oligoethylene unit, bilayer widths were found to be more for the lipids containing disaccharides as their headgroup than monosaccharides. Figure 5. Molecular structures of various cholesterol-based glycolipids. Calorimetry studies of the coaggregates containing naturally occurring 1, 2-dipalmitoylphosphatidylcholine (DPPC) and various mol-% of each of the glycolipids revealed that more than 30 mol-% of glycolipids are required to completely abolish the phase transition of DPPC membranes. These results were further supported by fluorescence anisotropy measurements of the co-aggregates using 1, 6-diphenylhexatriene (DPH) as a probe. Fluorescence anisotropy of the neat vesicles revealed that 9a and 9c were more rigid than DPPC vesicles in the solid-like gel phase, while the glycolipids with longer oxyethylene spacers (n = 3 and 4) were less rigid than the DPPC vesicles. Chapter 6. Hydrophobic Moiety Decides the Synergistic Increase in Transfection Efficiency in Cationic Phospholipid/Cationic Lipid mixtures This chapter describes the effect of inclusion of cationic lipid/cationic gemini lipids into the membranes of a cationic phospholipid on the gene delivery efficiency across HeLa and HEK293T cell lines. Although all the three cationic lipids have the same quaternary ammonium moiety as their headgroup, they differ from each other in terms of their hydrophobic moiety and in the number of cationic headgroups. Chol-N is a cholesterol based monocationic lipid, while 2C14-N and 2C14N-5-N2C14N are monomeric and gemini cationic lipids respectively with pseudoglycerol backbone consisting of tetradecyl (n-C14H29) chains. Each of the three cationic lipids under the current investigation, namely, Chol-N, 2C14-N and 2C14N-5-N2C14N were added in different ratios to EtDMoPC and the resultant mixed membranes were studied for the biophysical characterization and gene delivery efficacies. Figure 6. Molecular structures of cationic lipids used in this study. All the formulations were characterized using dynamic light scattering and zeta potential measurements to obtain their hydrodynamic diameters and surface charge properties respectively. Their DNA binding ability was also studied by measuring changes in zeta potential and gel electrophoresis of the lipoplexes formed by the coliposomal formulations and pDNA at different Lipid/DNA weight ratios. The gene delivery efficacies of various formulations were studied in terms of EGFP expression using pEGFP-C3 plasmid DNA in two different cell lines, namely HeLa and HEK293T. In the absence of serum we found that the formulation (EtDMoPC+2C14N-5-N2C14N) showed better transfection efficiency than the individual lipids. However, in the case of others, i.e., (EtDMoPC+Chol-N) and (EtDMoPC+2C14-N) formulations, there was a slight decrease in transfection efficiency compared to the individual lipids. In the presence of serum, the formulations (EtDMoPC+2C14-N) and (EtDMoPC+2C14N-5-N2C14N) showed significantly higher transfection efficacies compared to their individual lipids. Fusion assay using labelled cationic lipid formulations and unlabelled anionic liposomes revealed that lipoplexes prepared from EtDMoPC+ 2C14-N and EtDMoPC+ 2C14N-5-N2C14 exhibited much higher fusogenicity as compared to the lipoplexes prepared using EtDMoPC+Chol-N as well as the individual lipids. Thus, the liposome formulations which showed better transfection activity fused more readily with the anionic liposomes than did the formulations with poorer activity. Overall, we found that the hydrophobic domain of the cationic lipid/cationic gemini lipid that is added to cationic phospholipid has an important role on the transfection efficiency of the mixed formulations. Additionally the cytotoxicity studies revealed that each of these formulations was not significantly toxic making them viable for applications in vivo. (For structural formula pl see the abstract pdf file)
33

Synthèse d'un copolymère ionique électrochimiquement actif à base de ferrocène-imidazolium et son utilisation possible en matériaux composites

Skrypnik, Valentyn 09 1900 (has links)
No description available.
34

Solid-state NMR and Electrochemical Dilatometry Study of Charge Storage in Supercapacitor with Redox-active Ionic Liquid Electrolyte

Wang, Yanyu 10 1900 (has links)
No description available.
35

Exploration de nouvelles stratégies catalytiques pour le développement de méthodes d'oxydation / oxygénation aérobies / Exploration of new catalytic strategies for the development of O2-promoted oxidizing/oxygenating methodologies

Moutet, Jules 06 December 2017 (has links)
Ce travail est consacré à la conception, à la synthèse et à l’étude de catalyseurs d’oxydation à base de métaux 3d en association avec des ligands non-innocents. Tout d’abord, le développement de complexes dérivés de deux ligands rédox-actifs tétra-azotés originaux (motifs o-phénylènediamine, aniline et dipyrrine) a été étudié. Plusieurs espèces dans différents états d’oxydation ont été préparées. L’élucidation de leurs structures électroniques a été réalisée par des techniques complémentaires (diffraction des rayons X, électrochimie, spectroscopies UV-Vis-NIR, EPR et Mössbauer). Un complexe de fer biradicalaire basé sur le ligand bis(2-aminophényl)-o-phénylènediamine a été synthétisé. Parallèlement, une architecture innovante bis(2-aminophényl)dipyrrine a été développée. En réaction avec du nickel, du cuivre et du cobalt, elle a conduit à trois complexes isostructuraux présentant un caractère radicalaire anilinyle-dipyrrinyle jamais mis en évidence auparavant. La complexation de cette dipyrrine au manganèse a formé un singulier complexe dinucléaire radicalaire avec une valence mixte inhabituellement localisée sur le ligand.Dans un second temps, les complexes de fer, de cuivre et de manganèse ont été évalués dans des applications d’oxydation. L’étude de la réactivité du biradicalaire de fer a entraîné l’observation d’une espèce à haute valence en spectroscopie Mössbauer. D’autre part, le complexe de cuivre a montré une activité en oxydation d’un alcool. Enfin, une activité en catalyse d’oxygénation aérobie a été identifiée avec le complexe dinucléaire radicalaire de manganèse. / This work is devoted to the design, the synthesis and the study of oxidation catalysts, based on 3d metals and non-innocent ligands. First, the development of complexes derived from two unprecedented tetra-nitrogenated redox-active ligands (o-phenylenediamine, aniline and dipyrrin motifs) has been investigated. A number of species at various oxidation states has been prepared. The elucidation of their electronic structures was performed by complementary techniques (X-Ray diffraction, electrochemistry, UV-Vis-NIR, EPR and Mössbauer spectroscopy). A biradical iron complex based on the bis(2-aminophenyl)-o-phenylenediamine ligand was synthesized. In parallel, an innovative bis(2-aminophenyl)dipyrrin architecture was developed. Its reactions with nickel, copper and cobalt led to three isostructural complexes, showing an unprecedented anilinyl-dipyrrinyl radical character. The complexation of the dipyrrin to manganese afforded a unique dinuclear radical complex with a rare ligand-based mixed valence.In a second phase, iron, copper and manganese complexes were assessed in oxidation applications. The reactivity study of the biradical iron resulted in the observation of a high-valent species thanks to Mössbauer spectroscopy. On the other hand, the copper complex has shown an activity in the oxidation of an alcohol. Finally, a catalytic aerobic activity in oxygenation catalysis was identified with the dinuclear manganese radical complex.
36

ORGANIC ELECTROCHROMIC MATERIALS AND DEVICES: OPTICAL CONTRAST AND STABILITY CONSIDERATIONS

Kuluni Perera (15351412) 25 April 2023 (has links)
<p> In an era of advancing printed electronics, solution-processable organic semiconductors continue to make significant strides in electronic and optoelectronic applications. Electrochromic (EC) technology, which encompass reversible optical modulation under electrochemical biasing, has progressed rapidly over the past half-century and developed into niche commercial-scale devices for auto-tinting glasses as well as low-power, non-emissive displays. To utilize the advantages of organic electrochromic materials in next-generation devices, it is imperative to understand their fundamental material properties, interactions with other device components, and the underlying electrochemistry that governs the overall optical and electrochemical response of the complete electrochromic device. This dissertation presents a discussion on the synergistic role of organic electrochromes, charge-balancing layers and electrolytes in determining two key performance metrics, namely the optical contrast and operational stability, of an electrochromic device (ECD). The absorption features of colored-to-transmissive switching conjugated polymers have been investigated by exploring material design strategies in conjunction with analytical approaches to optimize and enhance the optical contrast. In parallel, transmissive redox-active radical polymer counter electrodes have been developed as compatible charge-balancing layers and integrated into devices by pairing with electrochromic polymers (ECPs) to achieve stable and high-contrast optical modulation. Electrochemical activity of both conjugated and radical polymer electrodes in different ionic and solvent environments have been further examined to understand material-electrolyte interactions governing mixed ionic-electronic conduction. Finally, a small molecular approach to realizing transparent-to-colored electrochromism is discussed, where distinct substituent-induced degradation pathways of conjugated radical cations were revealed. Overall, this research aims to assist future development of robust, ultra-high contrast organic electrochromic platforms.  </p>
37

Bioinspired Redox Active Pseudotetrahedral Ni(II) Thiolate and Phenolate Complexes: Synthesis, Characterization, Alkylation Kinetics and Molecular Oxygen Activation

Deb, Tapash K. January 2013 (has links)
No description available.
38

Redox-Active Metaphosphate-Like Terminals Enable High-Capacity MXene Anodes for Ultrafast Na-Ion Storage

Sun, Boya, Lu, Qiongqiong, Chen, Kaixuan, Zheng, Wenhao, Liao, Zhongquan, Lopatik, Nikolaj, Li, Dongqi, Hantusch, Martin, Zhou, Shengqiang, Wang, Hai I., Sofer, Zdeněk, Brunner, Eike, Zschech, Ehrenfried, Bonn, Mischa, Dronskowski, Richard, Mikhailova, Daria, Liu, Qinglei, Zhang, Di, Yu, Minghao, Feng, Xinliang 08 April 2024 (has links)
2D transition metal carbides and/or nitrides, so-called MXenes, are noted as ideal fast-charging cation-intercalation electrode materials, which nevertheless suffer from limited specific capacities. Herein, it is reported that constructing redox-active phosphorus−oxygen terminals can be an attractive strategy for Nb4C3 MXenes to remarkably boost their specific capacities for ultrafast Na+ storage. As revealed, redox-active terminals with a stoichiometric formula of PO2- display a metaphosphate-like configuration with each P atom sustaining three P-O bonds and one P=O dangling bond. Compared with conventional O-terminals, metaphosphate-like terminals empower Nb4C3 (denoted PO2-Nb4C3) with considerably enriched carrier density (fourfold), improved conductivity (12.3-fold at 300 K), additional redox-active sites, boosted Nb redox depth, nondeclined Na+-diffusion capability, and buffered internal stress during Na+ intercalation/de-intercalation. Consequently, compared with O-terminated Nb4C3, PO2-Nb4C3 exhibits a doubled Na+-storage capacity (221.0 mAh g-1), well-retained fast-charging capability (4.9 min at 80% capacity retention), significantly promoted cycle life (nondegraded capacity over 2000 cycles), and justified feasibility for assembling energy−power-balanced Na-ion capacitors. This study unveils that the molecular-level design of MXene terminals provides opportunities for developing simultaneously high-capacity and fast-charging electrodes, alleviating the energy−power tradeoff typical for energy-storage devices.

Page generated in 0.0934 seconds